|Table of Contents|

Comparative Analysis of Shear Capacity for Reinforced Concrete Members(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2010年02期
Page:
25-37,44
Research Field:
Publishing date:
2010-06-20

Info

Title:
Comparative Analysis of Shear Capacity for Reinforced Concrete Members
Author(s):
WEI Wei-wei GONG Jin-xin TIAN Lei
Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
Keywords:
reinforced concrete member shear strength shear capacity reliability analysis
PACS:
TU375.1
DOI:
-
Abstract:
The effects of the shear-span ratio, concrete strength, longitudinal reinforcement ratio, member height and other factors on shear strength of reinforced concrete members without or with stirrups based on GB 50010—2002, ACI 318-08, EN 1992-1-1:2004, as well as CSA A23.3-04 were comparatively analyzed. Based on a lot of experimental results about shear capacity of reinforced concrete beams, shear capacity calculation formulas were studied, then reliability analysis performed by method of first-order second moment was presented. The maximum or minimum stirrup ratio and stirrup spacing requirements were comparatively analyzed. The results show that average reliability indexes of shear strength for reinforced concrete members without or with stirrups designed according to Chinese code are greater than those of Canadian code, but smaller than ACI code and European code. For the minimum ratios of stirrups, European code is a little greater than Chinese code, and is greater than ACI code and Canadian code. For the maximum spacing of stirrups, the four codes are mostly the same when the member section height is small, with member section height increasing, European code is greater than ACI code and Canadian code, and Chinese code is the smallest.

References:

[1] GB 50010—2002,混凝土结构设计规范[S]. GB 50010—2002,Code for Design of Concrete Structures[S].
[2]ACI 318-08,Building Code Requirements for Structural Concrete(ACI 318-08)and Commentary[S].
[3]EN 1992-1-1:2004,Eurocode2:Design of Concrete Structures.Part 1-1:General Rules and Rules for Buildings[S].
[4]CSA A23.3-04,Design of Concrete Structures[S].
[5]CAN/CSA A23.3-94,Design of Concrete Structures[S].
[6]CAN/CSA-S6-00,Canadian Highway Bridge Design Code[S].
[7]AASHTO LRFD,Bridge Design Specifications and Commentary[S].
[8]贡金鑫,魏巍巍,胡加顺.中美欧混凝土结构设计[M].北京:中国建筑工业出版社,2007. GONG Jin-xin,WEI Wei-wei,HU Jia-shun.Design of Concrete Structure Based on Chinese,American and European Codes[M].Beijing:China Architecture & Building Press,2007.
[9]BAZANT Z P,KAZEMI M T.Size Effect on Diagonal Shear Failure of Beams Without Stirrups[J].ACI Structural Journal,1991,88(3):268-276.
[10]SHIOYA T.Shear Properties of Large Reinforced Concrete Members[R].Tokyo:Institute of Technol-ogy,Shimizu Corporation,1989:198.
[11]贡金鑫,魏巍巍,赵尚传.现代混凝土结构基本理论及应用[M].北京:中国建筑工业出版社,2009. GONG Jin-xin,WEI Wei-wei,ZHAO Shang-chuan.Basic Theory and Application of Modern Concrete Structures[M].Beijing:China Architecture & Building Press,2009.
[12]MTO 1993,Ontario Highway Bridge Design Code[S].
[13]中国建筑科学研究院.钢筋混凝土构件试验数据集——85年设计规范背景资料续编[M].北京:中国建筑工业出版社,1985. China Academy of Building Research.Test Data for Reinforced Concrete Members:Continuation of Background Data of 1985 Design Codes[M].Beijing:China Architecture & Building Press,1985.
[14]LUBELL A,SHERWOOD T,BENTZ E,et al.Safe Shear Design of Large Wide Beams[J].Concrete International,2004,26(1):66-78.
[15]ZARARIS P D,ZARARIS L P.Shear Strength of Reinforced Concrete Beams Under Uniformly Distrib-uted Loads[J].ACI Structural Journal,2008,105(6):711-719.
[16]ZARARIS P D,PAPADAKIS G C.Diagonal Shear Failure and Size Effect in RC Beams Without Web Reinforcement[J].Journal of Structural Engineering,2001,127(7):733-742. [1] SCHOLZ H.Ductility,Redistribution,and Hyperstatic Moments in Partially Prestressed Members[J].ACI Structural Journal,1990,87(3):341-349.
[2]FANTILLI A P,FERRETTI D,VALLINI P.Flexural Deformability of Reinforced Concrete Beams[J].Journal of Structural Engineering,1998,124(9):1041-1049.
[3]简 斌,白绍良,王正霖.预应力混凝土连续梁弯矩调幅的延性要求[J].工程力学,2001,18(2):51-57. JIAN Bin,BAI Shao-liang,WANG Zheng-lin.Ductility Requirement in the Moment Redistribution of Prestressed Concrete Continuous Beams[J].Engineering Mechanics,2001,18(2):51-57.
[4]ACI 318-08,Building Code Requirements for Structural Concrete(ACI 318-08)and Commentary[S].
[5]DIN 1045-1,Plain,Reinforced and Prestressed Concrete Structures.Part 1:Design and Construction[S].
[6]EN 1992-1-1:2004,Eurocode 2:Design of Concrete Structures.Part 1-1:General Rules and Rules for Buildings[S].
[7]AS 3600-2001,Concrete Structures[S].
[8]GB 50010—2002,混凝土结构设计规范[S]. GB 50010—2002,Code for Design of Concrete Structures[S].
[9]CECS 51:93,钢筋混凝土连续梁和框架考虑内力重分布设计规程[S]. CECS 51:93,Reinforced Concrete Continuous Beams and Frame Design Rules Considering Internal Force Redistributions[S].
[10]姜 锐,苏小卒.塑性铰长度经验公式的比较研究[J].工业建筑,2008(增1):425-430. JIANG Rui,SU Xiao-zu.Comparative Study on Emprical Plastic Hinge Length Formulas[J].Industrial Construction,2008(S1):425-430.
[11]贡金鑫,魏巍巍,赵尚传.现代混凝土结构基本理论及应用[M].北京:中国建筑工业出版社,2009. GONG Jin-xin,WEI Wei-wei,ZHAO Shang-chuan.Basic Theories and Applications of Modern Concrete Structures[M].Beijing:China Architecture & Building Press,2009.
[12]ASTM A615/A615M-06a,Standard Specification for Deformed and Plain Carbon-steel Bars for Concrete Reinforcement[S].
[13]贡金鑫,魏巍巍,胡家顺.中美欧混凝土结构设计[M].北京:中国建筑工业出版社,2007. GONG Jin-xin,WEI Wei-wei,HU Jia-shun.Concrete Structure Design in China,US and Europe[M].Beijing:China Architecture & Building Press,2007.
[14]熊艳萍.框架梁计算刚度放大系数与梁端弯矩调幅系数的研究[D].南昌:南昌大学,2007. XIONG Yan-ping.The Research on the Calculate Rigidity of Frame Beam and the Research on Amplitude Regulation Coefficient of Bending Moment Within Beam End[D].Nanchang:Nanchang University,2007.
[15]KODUR V K.Redistribution of Moment and the Influence of Secondary Moment in Continuous Pre-stressed Concrete Beams[D].Kingston:Queen's University,1992.
[16]门进杰,史庆轩,刘继明,等.高强混凝土复合受扭构件钢筋应变及极限扭矩的试验研究[J].西安建筑科技大学学报:自然科学版,2007,39(2):193-198. MEN Jin-jie,SHI Qing-xuan,LIU Ji-ming,et al.Strain of Steel Reinforcement and Ultimate Torque on Torsional Behaviors of High-strengthReinforced Concrete Members Subjected to Combined Torsion[J].Journal of Xi'an University of Architecture & Technology:Natural Science Edition,2007,39(2):193-198.
[17]薛伟辰,胡于明,王 巍.预应力混凝土梁徐变性能试验[J].中国公路学报,2008,21(4):61-66. XUE Wei-chen,HU Yu-ming,WANG Wei.Experiment on Creep Behaviors of Prestressed Concrete Beams[J].China Journal of Highway and Transport,2008,21(4):61-66.
[18]张 峰,叶见曙,徐向锋.预应力混凝土梁非线性分析单元模型[J].交通运输工程学报,2007,7(5):68-72. ZHANG Feng,YE Jian-shu,XU Xiang-feng.Non-linear Analysis Element Model of Prestressed Concrete Beam[J].Journal of Traffic and Transportation Engineering,2007,7(5):68-72.
[19]白国良,楚留声,朱丽华.型钢混凝土框架静力非线性分析塑性铰参数研究[J].西安建筑科技大学学报:自然科学版,2007,39(6):756-761. BAI Guo-liang, CHU Liu-sheng,ZHU Li-hua.Determination of Plastic Hinge Property for Steel Re-inforced Concrete Frame in Nonlinear Static Analysis[J].Journal of Xi'an University of Architecture & Technology:Natural Science Edition,2007,39(6):756-761.

Memo

Memo:
-
Last Update: 2010-06-20