|Table of Contents|

Predition of Concrete Strength of Existing Buildings Based on BP Neural Networks(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2011年01期
Page:
70-75
Research Field:
Publishing date:
2011-03-20

Info

Title:
Predition of Concrete Strength of Existing Buildings Based on BP Neural Networks
Author(s):
YOU Jie CHE Yi ZHONG Wei-qiu
YOU Jie, CHE Yi, ZHONG Wei-qiu
Keywords:
BP neural network existing building concrete strength momentum method adaptive adjustment method
PACS:
TU375
DOI:
-
Abstract:
Based on the test data analysis method, characteristic parameters of the existing buildings, i.e. service time, construction time, in-situ inspection time of structure, design value of concrete strength, and carbonation depth of concrete were extracted, and the artificial neural network model was developed to predict the degradation of concrete strength of the existing buildings. The back propagation(BP)algorithm was improved by using the momentum method and adaptive adjustment method. Both minimum and maximum values of concrete strength were predicted using the trained BP neural network and were compared with the measured values. Results show that using BP neural network to predict the degradation of concrete strength of existing buildings is feasible. Results of this study can provide references for the existing building seismic performances of large area surveys.

References:

[1] 刘青峰.神经网络智能诊断系统在混凝土结构中的应用研究[D].湘潭:湘潭大学,2006. LIU Qing-feng.Applicative Research of the Neural Network Intelligent Diagnosis System in Concrete Structure[D].Xiangtan:Xiangtan University,2006.
[2]姜绍飞,钟善桐.神经网络在结构工程中的应用[J].哈尔滨建筑大学学报,1998,31(6):129-134. JIANG Shao-fei,ZHONG Shan-tong.The Application of Neural Networks in Structural Engineering[J].Journal of Harbin University of Civil Engineering and Architecture,1998,31(6):129-134.
[3]REN L Q,ZHAO Z Y.An Optimal Neural Network and Concrete Strength Modeling[J].Advances in Engineering Software,2002,33(3):117-130.
[4]DIAS W P S,POOLIYADDA S P.Neural Networks for Predicting Properties of Concretes with Admixtures[J].Construction and Building Materials,2001,15(7):371-379.
[5]赵复笑,杨殿海,陈 宏.基于神经网络的沥青混凝土路面使用性能预测[J].沈阳建筑工程学院学报:自然科学版,2004,20(2):121-123,146. ZHAO Fu-xiao,YANG Dian-hai,CHEN Hong.Asphalt Concrete Pavement Performance Forecast Based on Neural Network[J].Journal of Shenyang Architectural and Civil Engineering University:Natural Science,2004,20(2):121-123,146.
[6]SEBASTIA M,OLMO I F,IRABIEN A.Neural Network Prediction of Unconfined Compressive Strength of Coal Fly Ash-cement Mixtures[J].Cement and Concrete Research,2003,33(8):1137-1146.
[7]丁声荣,余巍伟.混凝土的强度预测及其配合比优化设计研究[J].山西建筑,2008,34(34):1-2. DING Sheng-rong,YU Wei-wei.Forecast of Concrete Strength and Its Optimal Mixture Rate Design Research[J].Shanxi Architecture,2008,34(34):1-2.
[8]余雪娟.基于神经网络的混凝土强度预测[J].工程质量,2008(7):40-42,46. YU Xue-juan.Prediction Model of Concrete Strength by Artificial Neural Network[J].Quality of Civil Engineering and Construction,2008(7):40-42,46.
[9]韩 越,张新东.再生混凝土强度预测的神经网络模型[J].混凝土,2008(4):22-23,26. HAN Yue,ZHANG Xin-dong.Neural Network Model of the Recycled Concrete Strength[J].Concrete,2008(4):22-23,26.
[10]陈 强,王新刚.人工神经网络在混凝土强度预测中的应用[J].工业建筑,2007,37(增1):1013-1016. CHEN Qiang,WANG Xin-gang.The Application of ANN in Forecast to Concrete Strength[J].Industrial Construction,2007,37(S1):1013-1016.
[11]崔 猛,王新刚.混凝土强度预测的人工智能方法[J].山西建筑,2008,34(27):99-101. CUI Meng,WANG Xin-gang.Artificial Intelligent Method for Strength Prediction of Concrete[J].Shanxi Architecture,2008,34(27):99-101.
[12]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005:88-89. ZHOU Kai-li,KANG Yao-hong.Neural Network Model and MATLAB Simulated Program Design[M].Beijing:Tsinghua University Press,2005:88-89.
[13]张艳梅,王 锋,仲伟秋.基于神经网络的混凝土构件质量识别[J].鞍山钢铁学院学报,2002,25(1):29-32. ZHANG Yan-mei,WANG Feng,ZHONG Wei-qiu.Quality Examination for Concrete Members Based on Neural Network Technique[J].Journal of Anshan Institute of Iron and Steel Technology,2002,25(1):29-32.
[14]高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-86. GAO Da-qi.On Structures of Supervised Linear Basis Function Feed Forward Three-layered Neural Networks[J].Chinese Computers,1998,21(1):80-86.
[15]MIRCHANDANI G,CAO W.On Hidden Nodes for Neural Nets[J].IEEE Transactions on Circuits and Systems,1992,36(5):661-664.
[16]叶爱文,谢慧才.混凝土中钢筋直径雷达检测的神经网络方法[J].建筑科学与工程学报,2008,25(4):105-110. YE Ai-wen,XIE Hui-cai.Neural Network Method of Diameter Detection of Rebar in Concrete by Using GPR[J].Journal of Architecture and Civil Engineering,2008,25(4):105-110.
[17]刘义艳,段晨东,巨永锋,等.基于神经网络与特征融合的损伤诊断方法[J].长安大学学报:自然科学版,2008,28(6):106-110. LIU Yi-yan,DUAN Chen-dong,JU Yong-feng,et al.Diagnosis Method of Structure Damage Using Neural Network and Feature Fusion[J].Journal of Chang'an University:Natural Science Edition,2008,28(6):106-110.
[18]杨文娟.神经网络和主元分析-神经网络软测量技术在污水处理系统中的应用[J].地球科学与环境学报,2008,30(1):101-106. YANG Wen-juan.Soft Sensors with ANN and PCA-ANN for Wastewater Treatment System[J].Journal of Earth Sciences and Environment,2008,30(1):101-106.
[19]董贤哲,张军平.补偿模糊神经网络在砂土液化势评价中的应用[J].地球科学与环境学报,2008,30(1):64-68. DONG Xian-zhe,ZHANG Jun-ping.Application of Compensative Fuzzy Neural Network in Assessment of Sand Liquefaction Potential[J].Journal of Earth Sciences and Environment,2008,30(1):64-68.
[20]潘文超.以广义回归神经网络预测共同基金报酬[J].长安大学学报:社会科学版,2007,9(4):55-58. PAN Wen-chao.Forecast for Mutual Fund Returns with Gerenal Regression Neural Network[J].Journal of Chang'an University:Social Science Edition,2007,9(4):55-58.
[21]郭 琦,贺拴海,白 云.基于神经网络的简支梁桥预应力衰减评估模型[J].长安大学学报:自然科学版,2007,27(6):53-57. GUO Qi,HE Shuan-hai,BAI Yun.Evaluation Model on Prestress Attenuation of Simple Span Bridges Based on Neural Networks[J].Journal of Chang'an University:Natural Science Edition,2007,27(6):53-57.
[22]牛荻涛,王庆霖.一般大气环境下混凝土强度经时变化模型[J].工业建筑,1995,25(6):36-38. NIU Di-tao,WANG Qing-lin.Models of Concrete Strength Changing with Time in General Air Environment[J].Industrial Construction,1995,25(6):36-38.

Memo

Memo:
-
Last Update: 2011-03-20