|Table of Contents|

Finite Element Analysis of Aluminum Alloy Core Assembled Bucking-restrained Braces(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2019年02期
Page:
56-63
Research Field:
Publishing date:

Info

Title:
Finite Element Analysis of Aluminum Alloy Core Assembled Bucking-restrained Braces
Author(s):
LI Guo-chang ZHANG Hong-en YANG Zhi-jian SHI Xian-shuo
(School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China)
Keywords:
finite element analysis aluminum alloy core assembled buckling-restrained brace yield length ratio width-thickness ratio bolt spacing gap
PACS:
TU352.1
DOI:
-
Abstract:
An aluminum alloy inner core assembled buckling-restrained braces(ALB)was proposed, and four groups and nineteen kinds of ALB by using A5083 aluminum alloy as the inner core of energy dissipation were designed, and the finite element analysis was carried out by ABAQUS software. The influences of yield length ratio YLR, width-thickness ratio, bolt spacing, gap between core plate and restraint plate on ALB performance were studied. The results show that when YLR<0.75, the energy dissipation performance of the buckling-restrained brace(BRB)increases with the increase of YLR, when YLR>0.75, the energy dissipation performance of the BRB begins to decrease as the YLR increases, when YLR=0.75, the overall performance of the BRB is the best. The energy dissipation performance of the BRB decreases with the increase of the width-thickness ratio, when the width-thickness ratio is no more than 10, the BRB can get better energy dissipation capability. The bolt spacing should not be too large. The bolt spacing is controlled by controlling the ratio of the bolt spacing Lb to the buckling wavelength Lw of the BRB core plate. When the Lb/Lw is not more than 1.5, the force of the constraint unit is more reasonable and can provide sufficient binding force for the core unit. The gap between the core plate and the constraint unit is too small to leave enough space for the deformation of the core plate. When the gap is too large, the bearing capacity will be greatly reduced and unstable. When the gap is controlled in 0.5-2 mm, the supporting capacity performance is better.

References:

References:
[1] 王永贵.屈曲约束支撑及支撑框架结构抗震性能与设计方法研究[D].北京:中国矿业大学(北京),2014.
WANG Yong-gui.Research on Seismic Performance and Design Method of Buckling-restrained Brace and Brace-frame Structure[D].Beijing:China University of Mining & Technology(Beijing),2014.
[2]姜文伟,赵雪莲,包联进,等.世博博物馆主体结构设计[J].建筑钢结构进展,2017,19(5):22-29,90.
JIANG Wen-wei,ZHAO Xue-lian,BAO Lian-jin,et al.Design of Main Structure in Expo Museum[J].Progress in Steel Building Structures,2017,19(5):22-29,90.
[3]卢清刚,周祥茵,刘永豪,等.中关村国防科技园 A 栋综合楼超限结构设计[J].建筑结构,2017,47(13):63-68.
LU Qing-gang,ZHOU Xiang-yin,LIU Yong-hao,et al.Out-of-code Structural Design of Complex Building A of National Defense Science and Technology Park in Zhongguancun[J].Building Structure,2017,47(13):63-68.
[4]徐自然,苏 骏,崔家春,等.上海浦东国际机场三期扩建工程卫星厅消能减震项目抗震性能化分析[J].建筑结构,2017,47(12):23-28.
XU Zi-ran,SU Jun,CUI Jia-chun,et al.Seismic Performance Analysis on Energy Dissipation Satellite Hall of Shanghai Pudong International Airport Three Phase Expansion Project[J].Building Structure,2017,47(12):23-28.
[5]李国强,孙飞飞,陈素文,等.大吨位国产TJⅡ型屈曲约束支撑的研制与试验研究[J].建筑钢结构进展,2009,11(4):22-26.
LI Guo-qiang,SUN Fei-fei,CHEN Su-wen,et al.Development and Experimental Study of Large-tonnage Domestic TJⅡ Buckling-restrained Brace[J].Progress in Steel Building Structures,2009,11(4):22-26.
[6]TSAI K C,WU A C,WEI C Y,et al.Welded End-slot Connection and Debonding Layers for Buckling-restrained Braces[J].Earthquake Engineering & Structural Dynamics,2014,43(12):1785-1807.
[7]马 宁.全钢防屈曲支撑及其钢框架结构抗震性能与设计方法[D].哈尔滨:哈尔滨工业大学,2010.
MA Ning.Seismic Behavior and Design Method of All-steel Buckling Restrained Braces and Steel Frames[D].Harbin:Harbin Institute of Technology,2010.
[8]USAMI T,GE H B,KASAI A.Overall Buckling Prevention Condition of Buckling-restrained Braces as a Structural Control Damper[C]//WCEE.Proceedings of the 14th World Conference on Earthquake Engineering.Beijing:WCEE,2008:1-9.
[9]贾 斌,张其林,罗晓群,等.新型铝合金耗能支撑屈曲约束条件研究[J].地震工程学报,2014,36(3):495-503.
JIA Bin,ZHANG Qi-lin,LUO Xiao-qun,et al.Buckling Restraint Conditions for Innovative Aluminum Alloy Energy Dissipation Braces[J].China Earthquake Engineering Journal,2014,36(3):495-503.
[10]王国军,王祝堂.铝合金在中国民用航空器上的应用[J].轻合金加工技术,2017,45(11):1-11.
WANG Guo-jun,WANG Zhu-tang.Application of Aluminum Alloy on China's Civil Aircraft[J].Light Alloy Fabrication Technology,2017,45(11):1-11.
[11]李 龙,吕金明,严 安,等.铝合金装甲材料的应用及发展[J].兵器材料科学与工程,2017,40(6):105-113.
LI Long,LU Jin-ming,YAN An,et al.Application and Development of Aluminum Alloy Armor Materials[J].Ordnance Material Science and Engineering,2017,40(6):105-113.
[12]DE MATTEIS G,BRANDO G,MAZZOLANI F M.Pure Aluminium:An Innovative Material for Structural Applications in Seismic Engineering[J].Construction and Building Materials,2012,26(1):677-686.
[13]USAMI T,WANG C L,FUNAYAMA J.Developing High-performance Aluminum Alloy Buckling-restrained Braces Based on Series of Low-cycle Fatigue Tests[J].Earthquake Engineering & Structural Dynamics,2012,41(4):643-661.
[14]WANG C L,USAMI T,FUNAYAMA J,et al.Low-cycle Fatigue Testing of Extruded Aluminium Alloy Buckling-restrained Braces[J].Engineering Structures,2013,46:294-301.
[15]DUSICKA P,TINKER J.Global Restraint in Ultra-lightweight Buckling-restrained Braces[J].Journal of Composites for Construction,2013,17(1):139-150.
[16]贾 斌,张其林,罗晓群,等.铝合金芯板防屈曲耗能支撑滞回性能研究[J].建筑结构学报,2015,36(8):49-57.
JIA Bin,ZHANG Qi-lin,LUO Xiao-qun,et al.Study on Hysteretic Behavior of Aluminium Alloy Energy Dissipation Braces[J].Journal of Building Structures,2015,36(8):49-57.
[17]贾 斌,张其林,赖 伟,等.循环荷载作用下铝合金耗能支撑本构关系[J].上海交通大学学报,2016,50(11):1742-1747.
JIA Bin,ZHANG Qi-lin,LAI Wei,et al.Constitutive Relation of Aluminium Alloy Energy Dissipation Braces at Cyclic Loading[J].Journal of Shanghai Jiaotong University,2016,50(11):1742-1747.
[18]ANSI/AISC 341-10,Seismic Provisions for Structural Steel Buildings[S].
[19]周 云.防屈曲耗能支撑结构设计与应用[M].北京: 中国建筑工业出版社,2007
ZHOU Yun.Design and Application of Buckling-restrained Braced Structures[M].Beijing:China Architecture & Building Press,2007.
[20]JGJ 82—2011,钢结构高强度螺栓连接技术规程[S].
JGJ 82—2011,Technical Specification for High Strength Bolt Connections of Steel Structures[S].
[21]陈绍蕃.论高强度螺栓连接的分类和抗拉连接的计算[J].建筑钢结构进展,2014,16(3):1-6.
CHEN Shao-fan.On the Classification of High-strength Bolt Connections and the Calculation of Connections Subjected to Tension[J].Progress in Steel Building Structures,2014,16(3):1-6.
[22]KOETAKA Y,BYAKUNO Y,INOUE K.Experimental Verification of Design Criteria of Knee Brace Damper[C]//ISSS.Proceedings of the 4th International Symposium on Steel Structures.Seoul:ISSS,2006:125-136.
[23]CHOU C C,CHEN S Y.Subassemblage Tests and Finite Element Analyses of Sandwiched Buckling-restrained Braces[J].Engineering Structures,2010,32(8):2108-2121.
[24]唐 荣.新型全钢防屈曲耗能支撑的性能试验与设计方法研究[D].广州:广州大学,2012.
TANG Rong.Performance Testing and Designing Method Study of All-metallic Buckling-restrained Brace[D].Guangzhou:Guangzhou University,2012.

Memo

Memo:
-
Last Update: 2019-03-27