|Table of Contents|

Study on Reverse Humidity Response Law and Forecast Model of Recycled Concrete Mixed with Fly Ash(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2021年05期
Page:
83-90
Research Field:
Publishing date:

Info

Title:
Study on Reverse Humidity Response Law and Forecast Model of Recycled Concrete Mixed with Fly Ash
Author(s):
JIANG Jian-hua WU Qi FU Yong-quan SUI Yuan LIN Ming-yi
(College of Civil and Transportation Engineering, Hohai University, Nanjing 210024, Jiangsu, China)
Keywords:
recycled concrete fly ash compressive strength reverse humidity response prediction model
PACS:
TU973.2
DOI:
10.19815/j.jace.2020.11037
Abstract:
The effects of the replacement rate of recycled coarse aggregate and fly ash content on the mechanical properties of recycled concrete and its reverse humidity response in the drying process were studied under simulated artificial climate conditions. Based on the relevant theories of mass transfer, a prediction model of the reverse humidity response of fly ash recycled concrete was proposed and its feasibility was verified. The test results show that the 28 d compressive strength of concrete increases firstly and then decreases with the increase of the replacement rate of recycled coarse aggregate and the content of fly ash. When the fly ash content is constant, the compressive strength of concrete with the replacement rate of recycled coarse aggregate of 25% reaches the maximum. When the replacement rate of recycled coarse aggregate is constant, the compressive strength of fly ash content of 10% is the maximum. At the same time of reverse humidity response, when the replacement rate of recycled coarse aggregate is 25%, the concrete reverse humidity response rate is the lowest, and the replacement rate of 0%, 50%, 75% and 100% increases successively. Concrete with fly ash content of 10% has the lowest humidity response rate, while those with content of 0%, 20% and 30% increase in turn. In the early stage of the reverse humidity response, the two influencing factors have greater influence on the reverse response rate of concrete. With the development of humidity response, the influence is gradually smaller. In addition, with the increase of fly ash content, the difference of the reverse humidity response rate in different time periods gradually increases.

References:

[1] 卢 黔.再生混凝土研究现状及展望[J].四川建材,2016,42(2):20-21.
LU Qian.The Current Situation and Prospects of Recycled Concrete[J].Sichuan Building Materials,2016,42(2):20-21.
[2]陈云钢,肖建庄,孙振平.再生粗骨料混凝土耐久性试验研究[J].安徽工业大学学报:自然科学版,2013,30(3):280-284.
CHEN Yun-gang,XIAO Jian-zhuang,SUN Zhen-ping.Experimental Study on the Durability of Recycled Coarse Aggregate Concrete[J].Journal of Anhui University of Technology:Natural Science,2013,30(3):280-284.
[3]李 恒,郭庆军,王家滨,等.再生混凝土界面结构及耐久性综述[J].材料导报,2020,34(7):13050-13057.
LI Heng,GUO Qing-jun,WANG Jia-bin,et al.Meso-/Micro-structure of Interfacial Transition Zone and Durability of Recycled Aggregate Concrete:A Review[J].Materials Reports,2020,34(7):13050-13057.
[4]张晓华,孟云芳,张仕林.再生粗骨料生产工艺基本研究[J].价值工程,2015(33):117-119.
ZHANG Xiao-hua,MENG Yun-fang,ZHANG Shi-lin.Study on Basic Production Technology of Recycled Coarse Aggregate[J].Value Engineering,2015(33):117-119.
[5]尹志刚,张 恺,范 巍,等.不同冻融介质作用下再生骨料透水混凝土耐久性试验研究[J].硅酸盐通报,2019,38(7):2137-2143.
YIN Zhi-gang,ZHANG Kai,FAN Wei,et al.Experimental Study on the Durability of Recycled Aggregate Pervious Concrete Under Different Freeze-thaw Media Conditions[J].Bulletin of the Chinese Ceramic Society,2019,38(7):2137-2143.
[6]何晓莹,王瑞骏,陶 喆,等.低掺量粉煤灰再生混凝土抗冻耐久性试验研究[J].硅酸盐通报,2018,37(11):3522-3527.
HE Xiao-ying,WANG Rui-jun,TAO Zhe,et al.Experimental Study on Frost-resistant Durability of Recycled Concrete with Low Content of Fly Ash[J].Bulletin of the Chinese Ceramic Society,2018,37(11):3522-3527.
[7]李建沛.锂渣再生混凝土强度及耐久性试验研究[J].新型建筑材料,2018(4):67-69,80.
LI Jian-pei.Experimental Research on Strength and Durability of Recycled Aggregate Concrete with Lithium Slag.[J].New Building Materials,2018(4):67-69,80.
[8]洪 雷,马腾龙,王苏岩.湿热环境下预应力CFRP加固高强混凝土的耐久性[J].建筑科学与工程学报,2017,34(1):25-31.
HONG Lei,MA Teng-long,WANG Su-yan.Durability of High Strength Concrete Strengthened with Prestressed CFRP Under Wet-thermal Environments[J].Journal of Architecture and Civil Engineering,2017,34(1):25-31.
[9]高 原,张 君,孙 伟.干湿循环下混凝土湿度与变形的测量[J].清华大学学报:自然科学版,2012,52(2):144-149.
GAO Yuan,ZHANG Jun,SUN Wei.Concrete Deformation and Interior Humidity During Dry-wet Cycles[J].Journal of Tsinghua University:Science and Technology,2012,52(2):144-149.
[10]戚彦福,唐先习,孙拴虎,等.基于不同风速的混凝土干缩特性及内部相对湿度试验研究[J].水利与建筑工程学报,2019,17(5):118-122,233.
QI Yan-fu,TANG Xian-xi,SUN Shuan-hu,et al.Dry Shrinkage and Internal Relative Humidity of Concrete Based on the Wind Speed Conditions[J].Journal of Water Resources and Architectural Engineering,2019,17(5):118-122,233.
[11]蒋建华,袁迎曙,王嵩林,等.人工气候环境下混凝土内相对湿度响应预测[J].中南大学学报:自然科学版,2013,44(12):5091-5099.
JIANG Jian-hua,YUAN Ying-shu,WANG Song-lin,et al.Prediction of Response of Relative Humidity in Concrete Under Artificial Climate Environment[J].Journal of Central South University:Science and Technology,2013,44(12):5091-5099.
[12]常洪雷,金祖权,刘 健.自干燥及水分扩散引起的高性能混凝土内部湿度演变[J].材料导报,2019,33(7):2370-2375.
CHANG Hong-lei,JIN Zu-quan,LIU Jian.Relative Humidity Evolution of High Performance Concrete Caused by Self-desiccation and Moisture Diffusion[J].Materials Reports,2019,33(7):2370-2375.
[13]APARICIO S,HERNANDEZ M G,ANAYA J J.Influence of Environmental Conditions on Concrete Manufactured with Recycled and Steel Slag Aggregates at Early Ages and Long Term[J].Construction and Building Materials,2020,249:118739.
[14]LIU P,SONG L,YU Z.Quantitative Moisture Model of Interior Concrete in Structures Exposed to Natural Weather[J].Construction and Building Materials,2016,102:76-83.
[15]王绎景,李 珠,秦 渊,等.再生骨料替代率对混凝土抗压强度影响的研究[J].混凝土,2018(12):27-30,33.
WANG Yi-jing,LI Zhu,QIN Yuan,et al.Effect of Replacement Rate of Recycled Coarse Aggregate on Compressive Strength of Concrete[J].Concrete,2018(12):27-30,33.
[16]刘 婷,刘京红,张仕桦,等.粉煤灰掺量和再生骨料替代率对再生混凝土强度影响研究[J].河北农业大学学报,2020,43(1):148-152.
LIU Ting,LIU Jing-hong,ZHANG Shi-hua,et al.Study on the Effect of Fly Ash Content and Recycled Aggregate Substitution Rate on the Strength of Recycled Concrete[J].Journal of Hebei Agricultural University,2020,43(1):148-152.
[17]张 鑫.再生混凝土内部微环境与外部环境的响应关系[D].徐州:中国矿业大学,2016.
ZHANG Xin.Response Relationship Between the Micro Environment and the External Environment of Recycled Concrete[D].Xuzhou:China University of Mining and Technology,2016.
[18]陈 卓,周 萍,梅 炽.传递过程原理[M].长沙:中南大学出版社,2011.
CHEN Zhuo,ZHOU Ping,MEI Chi.Principle of Transport Processes[M].Changsha:Central South University Press,2011.
[19]赵 品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社,2016.
ZHAO Pin,XIE Fu-zhou,SUN Zhen-guo.Fundamentals of Materials and Science Course[M].Harbin:Harbin Institute of Technology Press,2016.

Memo

Memo:
-
Last Update: 2021-09-01