|Table of Contents|

Influence of Construction Sequence of Parallel Curved Tunnels on Existing Tunnels in Soft Soil Stratum(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2021年06期
Page:
170-176
Research Field:
软土隧道施工与变形控制
Publishing date:

Info

Title:
Influence of Construction Sequence of Parallel Curved Tunnels on Existing Tunnels in Soft Soil Stratum
Author(s):
DENG Bi1 ZHANG Jun-wei2 ZHUGE Xu-song3 LIU Wen-xian4 LIN Xing-tao156 SU Dong156 CHEN Xiang-sheng156
(1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China; 2. China Railway 15 Bureau Group Co., Ltd., Shanghai 200070, China; 3. Zhuhai Dahengqin City New Center Development Co., Ltd., Zhuhai 519030, Guangdong, China; 4. Zhuhai Institute of Urban Planning and Design,Zhuhai 519000, Guangdong, China;
Keywords:
soft soil stratum curved tunnel construction sequence radius of curvature structural internal force
PACS:
TU43
DOI:
10.19815/j.jace.2021.08048
Abstract:
To study the influence of the construction sequence of parallel curved tunnels, a three-dimensional finite element numerical model was established according to the Mangzhou tunnel project in Hengqin. On the basis, the deformation of existing tunnel induced by the new curved shield tunnelling was investigated under different construction sequences and radii of curvature r(r=500, 800 m). The results show that the construction sequence has a small effect on the existing tunnel displacement, while the radius of curvature has a relatively large effect on the existing tunnel displacement, which increases by about 15% with the increasing of the radius of curvature(r=500-800 m). The existing tunnel displacements mainly occur within 2D(D is the tunnel outer diameter)in front of the shield excavation face and 1D behind it. The effect of the construction sequence on the internal forces of the existing tunnel is related to the radius of curvature. For a radius of curvature of 500 m, the construction sequence has a similar effect on the internal forces of the existing tunnel as the existing tunnel profile closest to the shield excavation produces the largest bending moment, and both the maximum and minimum bending moments occur close to the new tunnel side. The bending moment(absolute value)in the existing tunnel is smaller when the inner tunnel is excavated firstly, making it safer to excavate the inner tunnel firstly for parallel curved tunnel construction. The greatest axial forces are generated in the existing tunnel at a certain distance in front of the shield excavation face. The double-line tunnel with radius of curvature of 800 m is approximately similar to parallel tunnel and the construction sequence has a small effect on the variation and magnitude of the internal forces of the existing tunnel.

References:

[1] 方 勇,何 川.平行盾构隧道施工对既有隧道影响的数值分析[J].岩土力学,2007,28(7):1402-1406.
FANG Yong,HE Chuan.Numerical Analysis of Effects of Parallel Shield Tunneling on Existent Tunnel[J].Rock and Soil Mechanics,2007,28(7):1402-1406.
[2]何 川,苏宗贤,曾东洋.盾构隧道施工对已建平行隧道变形和附加内力的影响研究[J].岩石力学与工程学报,2007,26(10):2063-2069.
HE Chuan,SU Zong-xian,ZENG Dong-yang.Research on Influence of Shield Tunnel Construction on Deformation and Secondary Inner Force of Constructed Parallel Tunnel[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(10):2063-2069.
[3]刘汉龙,钟海怡,顾 鑫,等.平行隧道开挖引起场地沉降的透明土模型试验研究[J].土木与环境工程学报:中英文,2021,43(1):1-10.
LIU Han-long,ZHONG Hai-yi,GU Xin,et al.Transparent Soil Model Testing on Ground Settlement Induced by Parallel Tunnels Excavation[J].Journal of Civil and Environmental Engineering,2021,43(1):1-10.
[4]魏 纲,庞思远.双线平行盾构隧道施工引起的三维土体变形研究[J].岩土力学,2014,35(9):2562-2568.
WEI Gang,PANG Si-yuan.Study of Three-dimensional Soil Deformation Caused by Double-line Parallel Shield Tunnel Construction[J].Rock and Soil Mechanics,2014,35(9):2562-2568.
[5]ZHENG G,TONG J B,ZHANG T Q,et al,Experimental Study on Surface Settlements Induced by Sequential Excavation of Two Parallel Tunnels in Drained Granular Soil[J].Tunnelling and Underground Space Technology,2020,98:103347.
[6]邱明明,杨果林,吴镇清,等.双孔平行地铁隧道盾构施工地表沉降分布规律研究[J].现代隧道技术,2017,54(2):96-105.
QIU Ming-ming,YANG Guo-lin,WU Zhen-qing,et al.Distribution Laws of Surface Settlement Induced by Shield Construction of Twin-tube Metro Tunnels[J].Modern Tunnelling Technology,2017,54(2):96-105.
[7]张天奇.盾构法平行隧道施工引起的地面沉降及隧道相互影响机理与控制研究[D].天津:天津大学,2016.
ZHANG Tian-qi.Investigation on the Induced Surface Settlements,Tunnel Interaction Mechanisms and Control Countermeasures During the Construction of Two Parallel Shield Tunnels[D].Tianjin:Tianjin University,2016.
[8]郝润霞.软土地区曲线段盾构隧道超挖量与注浆量分析[J].地下空间与工程学报,2013,9(5):1132-1136.
HAO Run-xia.Analysis of Over-excavated Volume and Synchronous Grouting Volume for the Shield Tunnel at Curved Section in Soft Soil Area[J].Chinese Journal of Underground Space and Engineering,2013,9(5):1132-1136.
[9]陈 剑,李智明.急曲线隧道盾构超挖量及铰接角的理论算法[J].中国公路学报,2017,30(8):66-73.
CHEN Jian,LI Zhi-ming.Theoretical Algorithm for Over-excavated Volume and Articulation Angle During Shield Tunneling Along Sharp Curves[J].China Journal of Highway and Transport,2017,30(8):66-73.
[10]孙捷城,路林海,王国富,等.小半径曲线盾构隧道掘进施工地表变形计算[J].中国铁道科学,2019,40(5):63-72.
SUN Jie-cheng,LU Lin-hai,WANG Guo-fu,et al.Calculation Method of Surface Deformation Induced by Small Radius Curve Shield Tunneling Construction[J].China Railway Science,2019,40(5):63-72.
[11]邓皇适,傅鹤林,史 越.小转弯半径曲线盾构隧道开挖引发地表沉降计算[J].岩土工程学报,2021,43(1):165-173.
DENG Huang-shi,FU He-lin,SHI Yue.Calculation of Surface Settlement Caused by Excavation of Shield Tunnels with Small Turning Radius[J].Chinese Journal of Geotechnical Engineering,2021,43(1):165-173.
[12]LI S H,ZHANG M J,LI P F.Analytical Solutions to Ground Settlement Induced by Ground Loss and Construction Loadings During Curved Shield Tunneling[J].Journal of Zhejiang University-Science A:Applied Physics and Engineering,2021,22(4):296-313.
[13]陈 强.小半径曲线地铁隧道盾构施工技术[J].隧道建设,2009,29(4):446-450,474.
CHEN Qiang.Shield Boring Technology for Metro Tunnels on Curves with Small Radius[J].Tunnel Construction,2009,29(4):446-450,474.
[14]张明聚,张振波,陈 锋.高压富水碎裂状岩层小半径曲线盾构隧道施工技术[J].现代隧道技术,2018,55(6):197-203,209.
ZHANG Ming-ju,ZHANG Zhen-bo,CHEN Feng.Construction Techniques for the Small-radius Curved Shield Tunnels in Water-rich Fractured Stratum with High Pressure[J].Modern Tunnelling Technology,2018,55(6):197-203,209.
[15]梁 晗.复合地层小半径曲线隧道盾构掘进关键技术研究[D].北京:北京交通大学,2020.
LIANG Han.Study on the Key Technology of Shield Tunneling in Small Radius Curve Tunnel in Composite Stratum[D].Beijing:Beijing Jiaotong University,2020.
[16]ZHANG M J,LI S H,LI P F.Numerical Analysis of Ground Displacement and Segmental Stress and Influence of Yaw Excavation Loadings for a Curved Shield Tunnel[J].Computers and Geotechnics,2020,118(6):103325.
[17]刘志祥,张海清.PLAXIS高级应用教程[M].北京:机械工业出版社,2015.
LIU Zhi-xiang,ZHANG Hai-qing.PLSXIS Advanced Application Tutorial[M].Beijing:China Machine Press,2015.
[18]顾晓强,吴瑞拓,梁发云,等.上海土体小应变硬化模型整套参数取值方法及工程验证[J].岩土力学,2021,42(3):833-845.
GU Xiao-qiang,WU Rui-tuo,LIANG Fa-yun,et al.On HSS Model Parameters for Shanghai Soils with Engineering Verification[J].Rock and Soil Mechanics,2021,42(3):833-845.
[19]黄宏伟,徐 凌,严佳梁,等.盾构隧道横向刚度有效率研究[J].岩土工程学报,2006,28(1):11-18.
HUANG Hong-wei,XU Ling,YAN Jia-liang,et al.Study on Transverse Effective Rigidity Ratio of Shield Tunnels[J].Chinese Journal of Geotechnical Engineering,2006,28(1):11-18.
[20]钟小春,张金荣,秦建设,等.盾构隧道纵向等效弯曲刚度的简化计算模型及影响因素分析[J].岩土力学,2011,32(1):132-136.
ZHONG Xiao-chun,ZHANG Jin-rong,QIN Jian-she,et al.Simplified Calculation Model for Longitudinal Equivalent Bending Stiffness of Shield Tunnel and Its Influence Factors' Analysis[J].Rock and Soil Mechanics,2011,32(1):132-136.

Memo

Memo:
-
Last Update: 2021-11-01