|Table of Contents|

Numerical simulation of axial compression and hysteretic behavior of corrugated pipe through-hole column(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2023年05期
Page:
99-107
Research Field:
建筑结构
Publishing date:

Info

Title:
Numerical simulation of axial compression and hysteretic behavior of corrugated pipe through-hole column
Author(s):
YANG Bo1 ZHANG Yafei1 LU Dan2 YANG Yingwu3 LIANG Shixue1
(1. School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China; 2. East China Architectural Design & Research Institute Co., Ltd., Shanghai 200041, China; 3. College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China)
Keywords:
corrugated pipe through-hole column axial compressive behavior hysteretic behavior numerical analysis
PACS:
TU375
DOI:
10.19815/j.jace.2021.11120
Abstract:
In order to reduce the construction difficulty of assembling between the prefabricated concrete columns and save the construction cost, the direct connection technology of the corrugated pipe through-hole steel bars was proposed. The mechanical properties of the corrugated pipe through-hole column were analyzed by ABAQUS under monotonic loading and static thrust loading conditions, and the effect of corrugated pipe through-hole interpenetrating longitudinal reinforcement on load bearing capacity and hysteretic behavior of assembly column was studied. The results show that compared with the cast-in-situ concrete column, the axial compression capacity of corrugated pipe through-hole columns increases by about 13%. When the axial compression ratio is 0.2 and 0.6, the ductility coefficient of the assembly corrugated pipe through-hole columns increase 31% and 28%, the cumulative hysteresis energy consumption values increase by 3% and 9%,respectively. With the increase of axial compression ratio, ductility of corrugated pipe through-hole column decreases and cumulative hysteretic energy consumption increases, and both ductility and cumulative hysteretic energy consumption are higher than those of cast-in-place concrete column. From the analysis of indicators such as the stress cloud diagram, damage curve, hysteresis curve, skeleton curve and stiffness degradation curve of the precast column concrete, corrugated pipe has a greater restraint effect on the core concrete and the longitudinally reinforcement of the column, and the plastic deformation of the component is delayed. The bellows inserted longitudinal reinforcement connection technology can realize the effective connection between precast concrete columns, and the seismic performance of the assembly column is better than that of the cast-in-place concrete column.

References:

[1] 魏 博.新型预制装配柱-柱连接节点抗震性能及设计方法研究[D].西安:西安建筑科技大学,2020.
WEI Bo.Experimental study on seismic performance and design method of new prefabricated column-to-column connection joints[D].Xi'an:Xi'an University of Architecture and Technology,2020.
[2]罗青儿,张仟朋,程文瀼,等.装配整体式钢筋混凝土框架柱榫式接头的试验研究[J].工业建筑,2008,38(10):48-52,47.
LUO Qinger,ZHANG Qianpeng,CHENG Wenrang,et al.Experimental study of tenon connection for precast monolithic R.C.frame column[J].Industrial Construction,2008,38(10):48-52,47.
[3]蒋立峰.新型装配式RC框架柱-柱连接节点受力性能研究[D].郑州:河南工业大学,2015.
JIANG Lifeng.Study on the stress performance of the new tape of prefabricated RC frame column and column connection node[D].Zhengzhou:Henan University of Technology,2015.
[4]陈 俊,肖 岩.纵筋浆锚连接预制柱的抗震性能试验研究[J].土木工程学报,2016,49(5):63-73.
CHEN Jun,XIAO Yan.Experimental study on seismic behavior of precast concrete column with longitudinal reinforcement grouting-anchoring connections[J].China Civil Engineering Journal,2016,49(5):63-73.
[5]POPA V,PAPURCU A,COTOFANA D,et al.Experimental testing on emulative connections for precast columns using grouted corrugated steel sleeves[J].Bulletin of Earthquake Engineering,2015,13(8):2429-2447.
[6]BELLERI A,RIVA P.Seismic performance and retrofit of precast concrete grouted sleeve connections[J].PCI Journal,2012,57(1):97-109.
[7]王 瑞,陈建伟,王 宁.钢筋套筒灌浆连接性能有限元分析[J].华北理工大学学报(自然科学版),2019,41(1):47-56.
WANG Rui,CHEN Jianwei,WANG Ning.Finite element analysis of connection performance of reinforcement sleeve grouting[J].Journal of North China University of Science and Technology(Natural Science Edition),2019,41(1):47-56.
[8]武立伟,苏幼坡,陈海彬,等.钢管灌浆套筒连接轴向受压性能试验研究[J].建筑结构学报,2019,40(11):191-199.
WU Liwei,SU Youpo,CHEN Haibin,et al.Experimental study on axial mechanical performance of steel pipe-to-sleeve grouted connection[J].Journal of Building Structures,2019,40(11):191-199.
[9]肖 顺,李向民,许清风,等.套筒灌浆缺陷对预制混凝土柱抗震性能影响的试验研究[J].建筑结构学报,2022,43(5):112-121.
XIAO Shun,LI Xiangmin,XU Qingfeng,et al.Experimental study on effect of sleeve grouting defects on seismic behavior of precast concrete columns[J].Journal of Building Structures,2022,43(5):112-121.
[10]徐文杰,李书奇,陶 里.浆锚搭接灌浆缺陷对装配式混凝土柱抗震性能的影响[J].建筑科学,2018,34(5):69-75.
XU Wenjie,LI Shuqi,TAO Li.Influence of the connection defect of the grout-filled lap joint on the seismic performance of the assembled concrete column[J].Building Science,2018,34(5):69-75.
[11]KIM Y A.Study of pipe splice sleeves for use in precast beam-column connections[D].Austin:University of Texas at Austin,2000.
[12]METELLI G,BESCHI C,RIVA P.Cyclic behaviour of a column to foundation joint for concrete precast structures[J].European Journal of Environmental and Civil Engineering,2011,15(9):1297-1318.
[13]惠 存,曹万林,王元清,等.底部加强型工字形截面钢管混凝土柱抗震性能数值分析[J].工程力学,2015,32(7):88-94,110.
HUI Cun,CAO Wanlin,WANG Yuanqing,et al.Numerical analysis for aseismic behavior of bottom strengthened I-sectional concrete filled steel tube columns[J].Engineering Mechanics,2015,32(7):88-94,110.
[14]石永久,王 萌,王元清.循环荷载作用下结构钢材本构关系试验研究[J].建筑材料学报,2012,15(3):293-300.
SHI Yongjiu,WANG Meng,WANG Yuanqing.Experimental study of structural steel constitutive relationship under cyclic loading[J].Journal of Building Materials,2012,15(3):293-300.
[15]杨雨青,牟在根.不同形式的槽钢加劲钢板剪力墙滞回性能研究[J].天津大学学报(自然科学与工程技术版),2019,52(8):876-888.
YANG Yuqing,MU Zaigen.Hysteretic behavior of different forms of channel-stiffened steel plate shear walls[J].Journal of Tianjin University(Science and Technology),2019,52(8):876-888.
[16]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
Code for design of concrete structures:GB 50010—2010[S].Beijing:China Architecture & Building Press,2011.
[17]方自虎,周海俊,赖少颖,等.ABAQUS混凝土应力-应变关系选择[J].建筑结构,2013,43(增2):559-561.
FANG Zihu,ZHOU Haijun,LAI Shaoying,et al.Choose of ABAQUS concrete stress-strain curve[J].Building Structure,2013,43(S2):559-561.
[18]MANDER J B,PRIESTLEY M J N,PARK R.Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering,1988,114(8):1804-1826.
[19]建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社,2016.
Code for seismic design of buildings:GB 50011—2010[S].Beijing:China Architecture & Building Press,2016.
[20]韦建刚,周 俊,罗 霞,等.高强钢管超高强混凝土柱抗震性能试验研究[J].工程力学,2021,38(7):30-40,51.
WEI Jiangang,ZHOU Jun,LUO Xia,et al.Experimental study on quasi-static behavior of ultrahigh strength concrete filled high strength steel tubular columns[J].Engineering Mechanics,2021,38(7):30-40,51.
[21]陈海彬,武立伟,李文硕,等.内置圆钢管混凝土的异形柱-组合梁装配式中节点抗震性能试验研究[J].建筑结构学报,2019,40(增1):118-125.
CHEN Haibin,WU Liwei,LI Wenshuo,et al.Experimental study on seismic behavior of middle joint of special-shaped column-composite beam assembly with inner circular steel tube concrete[J].Journal of Building Structures,2019,40(S1):118-125.

Memo

Memo:
-
Last Update: 2023-09-01