|Table of Contents|

Experimental study on bending behavior of narrow steel box-UHPC composite beam under negative bending moment(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2024年04期
Page:
42-50
Research Field:
建筑结构
Publishing date:

Info

Title:
Experimental study on bending behavior of narrow steel box-UHPC composite beam under negative bending moment
Author(s):
ZHENG Yan12 LIU Xiaobei1 YANG Hailin12 MO Shixu12 HUANG Jing1
(1.School of Civil Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China; 2.Guangxi Key Laboratory of Geomechanics and Geotechnical Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China)
Keywords:
narrow steel box-UHPC composite beam bending behavior negative bending moment region static load test ultimate bending capacity
PACS:
TU375
DOI:
10.19815/j.jace.2022.09086
Abstract:
In order to improve the mechanical behavior of steel-concrete composite beams under negative bending moment, a new narrow steel box-ultra-high performance concrete(UHPC)composite beam was proposed. The reversed static load tests of 6 specimens were completed to obtain the load-deflection curves, load-strain curves, load-maximum crack width curves of midspan, and the crack development and failure pattern of specimens in the whole test process. Based on the simplified plasticity theory, the calculation formula of ultimate flexural capacity of composite beams was derived. The results show that the narrow steel box-UHPC composite beam has good mechanical performance under negative bending moment. Increasing the reinforcement ratio, steel fiber content and UHPC relative plate thickness can improve the ductility and increase the ultimate flexural capacity of composite beams to a certain extent. The reinforcement ratio of flange has great influence on bearing capacity. When the reinforcement ratio increases from 1% to 2%, the ultimate flexural capacity increases by 15%. The initial cracking load is greatly influenced by the steel fiber content and UHPC relative plate thickness. When the steel fiber content increases from 1% to 2%, the initial cracking load increases by 32%. When the UHPC relative plate thickness increases from 0 to 0.5, the initial cracking load is improved by 56%. The increases of steel fiber content and UHPC relative plate thickness can effectively control the crack width, reduce the number of main cracks, and improve the durability of composite beams. The calculated value of the ultimate flexural capacity calculation formula of composite beam is in good agreement with the test data, indicating that the plasticity theory is suitable for the calculation of the bearing capacity of the narrow steel box-UHPC composite beam.

References:

[1] LEBET J P,HIRT M A.Steel bridges:conceptual and structural design of steel and steel-concrete composite bridges[M].New York:EPFL Press,2014.
[2]张洪祥.钢-混组合连续梁桥负弯矩区的UHPC应用研究[D].重庆:重庆交通大学,2019.
ZHANG Hongxiang.UHPC application research on negative moment area of steel-composite composite continuous beam bridge[D].Chongqing:Chongqing Jiaotong University,2019.
[3]WILLE K,EL-TAWIL S,NAAMAN A E.Properties of strain hardening ultra high performance fiber reinforced concrete(UHP-FRC)under direct tensile loading[J].Cement and Concrete Composites,2014,48:53-66.
[4]PARK S H,KIM D J,RYU G S,et al.Tensile behavior of ultra high performance hybrid fiber reinforced concrete[J].Cement and Concrete Composites,2012,34(2):172-184.
[5]周 安,戴 航,刘其伟.钢箱-预应力混凝土组合梁负弯矩区结构性能试验研究[J].土木工程学报,2009,42(12):69-75.
ZHOU An,DAI Hang,LIU Qiwei.Experimental study of the structural behavior of the negative bending zone of steel box-prestressed concrete composite beams[J].China Civil Engineering Journal,2009,42(12):69-75.
[6]余志武,张大付,焦 姣.钢-混凝土连续组合箱梁负弯矩区极限抗弯承载力研究[J].铁道科学与工程学报,2014,11(2):1-6.
YU Zhiwu,ZHANG Dafu,JIAO Jiao.Research on ultimate flexural bearing capacity of negative moment area for steel-concrete composite continuous box girder[J].Journal of Railway Science and Engineering,2014,11(2):1-6.
[7]刘新华,周 聪,张建仁,等.钢-UHPC组合梁负弯矩区受力性能试验[J].中国公路学报,2020,33(5):110-121.
LIU Xinhua,ZHOU Cong,ZHANG Jianren,et al.Experiment on negative bending behavior of steel-UHPC composite beams[J].China Journal of Highway and Transport,2020,33(5):110-121.
[8]樊健生,聂建国,张彦玲.钢-混凝土组合梁抗裂性能的试验研究[J].土木工程学报,2011,44(2):1-7.
FAN Jiansheng,NIE Jianguo,ZHANG Yanling.Experimental study of crack resistance of steel-concrete composite beams[J].China Civil Engineering Journal,2011,44(2):1-7.
[9]张彦玲,阎贵平,安明喆,等.钢-活性粉末混凝土组合梁的极限承载力[J].北京交通大学学报,2009,33(1):81-85.
ZHANG Yanling,YAN Guiping,AN Mingzhe,et al.Ultimate bearing capacity of steel-reactive powder concrete composite beams[J].Journal of Beijing Jiaotong University,2009,33(1):81-85.
[10]王 彬,刘来君,季建东.临猗黄河大桥组合梁负弯矩区力学性能优化措施研究[J].桥梁建设,2021,51(6):85-91.
WANG Bin,LIU Laijun,JI Jiandong.Study of mechanical property optimization measures for composite girder negative moment zone of Linyi Huanghe River bridge[J].Bridge Construction,2021,51(6):85-91.
[11]周逸松.考虑滑移效应的钢-混连续组合梁负弯矩区抗裂特性研究[D].南京:东南大学,2020.
ZHOU Yisong.Study on anti-cracking characteristics of negative moment regions of steel-concrete continuous composite girder considering slip effect[D].Nanjing:Southeast University,2020.
[12]苏庆田,杨国涛,吴 冲.斜腹板钢箱组合梁负弯矩区非线性受力性能[J].同济大学学报(自然科学版),2012,40(11):1589-1595.
SU Qingtian,YANG Guotao,WU Chong.Non-linear behavior of hogging moment zone of inclined web steel-box composite girder[J].Journal of Tongji University(Natural Science),2012,40(11):1589-1595.
[13]曹洪亮,陈 亮,姜竹昌,等.钢-混组合连续箱梁施工预拱度设置影响因素研究[J].世界桥梁,2020,48(3):53-57.
CAO Hongliang,CHEN Liang,JIANG Zhuchang,et al.Study of influential factors on pre-camber setting for steel-concrete composite continuous box girder during construction[J].World Bridges,2020,48(3):53-57.
[14]莫时旭,林飞扬,胥海宁.充填式钢箱-砼组合梁抗弯性能试验研究[J].南京工业大学学报(自然科学版),2017,39(2):107-112,132.
MO Shixu,LIN Feiyang,XU Haining.Experimental study on the flexural performance of concrete-filled steel-box composite beams[J].Journal of Nanjing Tech University(Natural Science Edition),2017,39(2):107-112,132.
[15]陈国红,徐 召.大跨径钢-混组合梁斜拉桥主梁力学特性研究[J].桥梁建设,2019,49(5):39-44.
CHEN Guohong,XU Zhao.Study of mechanical property of main girder for long-span steel-concrete composite girder cable-stayed bridge[J].Bridge Construction,2019,49(5):39-44.
[16]公路钢筋混凝土及预应力混凝土桥涵设计规范:JTG 3362—2018[S].北京:人民交通出版社,2018.
Specifications for design of highway reinforced concrete and prestressed concrete bridges and culverts:JTG 3362—2018[S].Beijing:China Communications Press,2018.
[17]褚少辉.钢-混凝土简支组合梁的性能研究与数值分析[D].石家庄:石家庄铁道大学,2013.
CHU Shaohui.Performance study and numerical analysis of steel-concrete simply supported composite beams[D].Shijiazhuang:Shijiazhuang Tiedao University,2013.
[18]王皓磊,孙 韬,刘晓阳,等.钢-UHPC连续组合梁抗弯性能试验[J].中国公路学报,2021,34(8):218-233.
WANG Haolei,SUN Tao,LIU Xiaoyang,et al.Experimental investigation on flexural capacity of steel-UHPC continuous composite girder[J].China Journal of Highway and Transport,2021,34(8):218-233.
[19]GRAYBEAL B A.Characterization of the behavior of ultra-high performance concrete[D].College Park:University of Maryland,2005.
[20]羊海林,郑 艳,莫时旭.负弯矩区部分充填混凝土对窄幅钢箱-混凝土组合梁受力性能影响试验研究[J].建筑结构学报,2019,40(11):131-139.
YANG Hailin,ZHENG Yan,MO Shixu.Experimental investigation effect of partially-filled concrete on mechanical behavior of narrow-width steel box concrete composite beam in negative moment region[J].Journal of Building Structures,2019,40(11):131-139.

Memo

Memo:
-
Last Update: 2024-07-20