[
1
]杨铄
,
许清风
,
王卓琳
.
基于卷积神经网络的结构损伤识别研究进展[
J
]
.
建筑科学与工程学报
,2022,
39(4)
:38
-
57.
YANG Shuo, XU Qingfeng, WANG Zhuolin. Research progress on structural damage detection based on convolutional neural networks
[
J
]
. Journal of Architecture and Civil Engineering, 2022, 39(4): 38
-
57.
[
2
]王璞瑾
,
肖建庄
,
段珍华
,
等
.
建筑物外立面损伤检测智能化发展趋势[
J
]
.
建筑科学与工程学报
,2022,
39(4)
:24
-
37.
WANG Pujin, XIAO Jianzhuang, DUAN Zhenhua, et al. Intelligent development trend of building enclosure damage detection
[
J
]
. Journal of Architecture and Civil Engineering, 2022, 39(4): 24
-
37.
[
3
]马宏伟
,
林逸洲
,
聂振华
.
利用少量传感器信息与人工智能的桥梁结构安全监测新方法[
J
]
.
建筑科学与工程学报
,2018,35(5):9
-
23.
MA Hongwei, LIN Yizhou, NIE Zhenhua. New methods of structural health monitoring based on small amount of sensor information and artificial intelligence
[
J
]
. Journal of Architecture and Civil Engineering, 2018, 35(5): 9
-
23.
[
4
]
AKHAVIAN R,BEHZADAN A H. Construction equipment activity recognition for simulation input modeling using mobile sensors and machine learning classifiers
[
J
]
. Advanced Engineering Informatics, 2015, 29(4): 867
-
877.
[
5
]
KIM H, AHN C R, ENGELHAUPT D, et al. Application of dynamic time warping to the recognition of mixed equipment activities in cycle time measurement
[
J
]
. Automation in Construction, 2018, 87: 225
-
234.
[
6
]
RASHID K M, LOUIS J. Times
-
series data augmentation and deep learning for construction equipment activity recognition
[
J
]
. Advanced Engineering Informatics, 2019, 42: 100944.
[
7
]
KIM J, CHI S. Adaptive detector and tracker on construction sites using functional integration and online learning
[
J
]
. Journal of Computing in Civil Engineering, 2017, 31(5): 04017026.
[
8
]
KIM J, CHI S. Action recognition of earthmoving excavators based on sequential pattern analysis of visual features and operation cycles
[
J
]
. Automation in Construction, 2019, 104: 255
-
264.
[
9
]
KIM J, CHI S. Multi
-
camera vision
-
based productivity monitoring of earthmoving operations
[
J
]
. Automation in Construction, 2020, 112: 103121.
[
10
]
YUAN C X, LI S, CAI H B. Vision
-
based excavator detection and tracking using hybrid kinematic shapes and key nodes
[
J
]
. Journal of Computing in Civil Engineering, 2017, 31: 04016038.
[
11
]
SHRESTHA A,MAHMOOD A. Review of deep learning algorithms and architectures
[
J
]
. IEEE Access, 2019, 7: 53040
-
53065.
[
12
]
MA J Y, JIANG X Y, FAN A X, et al. Image matching from handcrafted to deep features: a survey
[
J
]
. International Journal of Computer Vision, 2021,
129(1)
: 23
-
79.
[
13
]
REZAZADEH AZAR E, MCCABE B. Automated visual recognition of dump trucks in construction videos
[
J
]
. Journal of Computing in Civil Engineering, 2012, 26(6): 769
-
781.
[
14
]
ROBERTS D, GOLPARVAR
-
FARD M. End
-
to
-
end vision
-
based detection, tracking and activity analysis of earthmoving equipment filmed at ground level
[
J
]
. Automation in Construction, 2019, 105: 102811.
[
15
]
REN S Q, HE K M, GIRSHICK R, et al. Faster R
-
CNN: towards real
-
time object detection with region proposal networks
[
J
]
. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137
-
1149.
[
16
]
WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric
[
C
]
//IEEE. 2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE, 2017: 3645
-
3649.
[
17
]
ZHU X Y, LUO Z B, FU P, et al. VOC
-
RelD: vehicle re
-
identification based on vehicle
-
orientation
-
camera
[
C
]
//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle: IEEE, 2020: 2566
-
2573.
[
18
]
ZHANG X, NIE X S, SUN Z R, et al. Re
-
ranking vehicle re
-
identification with orientation
-
guide query expansion
[
J
]
. International Journal of Distributed Sensor Networks, 2022, 18(3): 155014772110663.
[
19
]
YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures
[
J
]
. Neural Computation, 2019, 31(7): 1235
-
1270.
[
20
]
VASWANI A, SHAZEER N M, PARMAR N,
et al
.Attention is all you need
[
C
]
//VON LUXBURG U, GUYON I. Proceedings of the 31st International Conference on Neural Information Processing Syste. Long Beach: Curran Associates Inc, 2017: 1
-
11.
[
21
]刘伟嵬
,
邓剑洋
,
张靖文
,
等
.
基于深度学习的挖掘机工作阶段的分类与识别[
J
]
.
东北大学学报
(
自然科学版
),2023,44(10):1464
-
1473.
LIU Weiwei, DENG Jianyang, ZHANG Jingwen,
et al
. Classification and identification of excavators
working stages based on deep learning
[
J
]
. Journal of Northeastern University (Natural Science), 2023,
44(10)
: 1464
-
1473.
[
22
]陈雪健
,
秦水介
,
白忠臣
,
等
.
深度学习行为识别的挖掘机生产效率监控系统[
J
]
.
智能计算机与应用
,2023,13(4):111
-
116,121.
CHEN Xuejian, QIN Shuijie, BAI Zhongchen, et al. Productivity analysis system of earthmoving excavator based on deep learning action recognition
[
J
]
. Intelligent Computer and Applications, 2023, 13(4): 111
-
116, 121.
[
23
]
YI F, WEN H, JIANG T. ASFormer: transformer for action segmentation
[
C
]
//BMVC. Proceedings of the 32nd British Machine Vision Conference. Beijing: BMVC, 2021: 236.
[
24
]
DU Y H, ZHAO Z C, SONG Y, et al. StrongSORT: make DeepSORT great again
[
J
]
. IEEE Transactions on Multimedia, 2023, 25: 8725
-
8737.
[
25
]
TERVEN J, CORDOVA
-
ESPARZA D M, ROMERO
-
GONZALEZ J A. A comprehensive review of YOLO architectures in computer vision: from YOLOv1 to YOLOv8 and YOLO
-
NAS
[
J
]
. Machine Learning and Knowledge Extraction, 2023, 5(4): 1680
-
1716.
[
26
]
HE K M,ZHANG X Y,REN S Q, et al. Deep residual learning for image recognition
[
C
]
//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770
-
778.
[
27
]
LIANG Y, LI X, JAFARI N, et al. Video object segmentation with adaptive feature bank and uncertain
-
region refinement
[
EB/OL
]
.(2020
-
10
-
15)
[
2024
-
11
-
20
]
.https://arxiv.org/abs/2010.07958.
[
28
]
WU C Y, FEICHTENHOFER C, FAN H Q, et al. Long
-
term feature banks for detailed video understanding
[
EB/OL
]
.(2018
-
12
-
12)
[
2024
-
10
-
27
]
.https://arxiv.org/abs/1812.05038.
[
29
]
ZHOU C, LI X, LOY C C, et al. EdgeSAM: prompt
-
In
-
the
-
loop distillation for on
-
device deployment of SAM
[
EB/OL
]
.(2023
-
12
-
11)
[
2024
-
10
-
21
]
.https://arxiv.org/abs/2312.06660.
[
30
]
DENG J, DONG W, SOCHER R, et al. ImageNet: a large
-
scale hierarchical image database
[
C
]
//IEEE. 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248
-
255.
[
31
]
WANG P, JIAO B L, YANG L, et al. Vehicle re
-
identification in aerial imagery: dataset and approach
[
C
]
//IEEE. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2019: 460
-
469.
[
32
]
XU S Y, WANG J, SHOU W C, et al. Computer vision techniques in construction: a critical review
[
J
]
. Archives of Computational Methods in Engineering, 2021, 28(5): 3383
-
3397.
[
33
]
BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: the CLEAR MOT metrics
[
J
]
. EURASIP Journal on Image and Video Processing, 2008(1): 246309.