[ 1 ] CASAS J R, APARICIO A C. Structural damage identification from dynamic - test data [ J ] . Journal of Structural Engineering, 1994, 120(8): 2437 - 2450. [ 2 ]冯紫科 , 杨璐 , 柳美玉 , 等 . 基于 BP 神经网络的桁架结构损伤识别研究[ J ] . 建筑科学与工程学报 ,2024,41(6):41 - 48. FENG Zike, YANG Lu, LIU Meiyu, et al. Research on damage identification of truss structures based on BP neural network [ J ] . Journal of Architecture and Civil Engineering, 2024, 41(6): 41 - 48. [ 3 ] HOU R R, XIA Y. Review on the new development of vibration - based damage identification for civil engineering structures: 2010 — 2019 [ J ] . Journal of Sound and Vibration, 2021, 491: 115741. [ 4 ]李雪松 , 马宏伟 , 林逸洲 . 基于卷积神经网络的结构损伤识别[ J ] . 振动与冲击 ,2019,38(1):159 - 167. LI Xuesong, MA Hongwei, LIN Yizhou. Structural damage identification based on convolution neural network [ J ] . Journal of Vibration and Shock, 2019, 38(1) : 159 - 167. [ 5 ] ZHANG Y Q, MIYAMORI Y, MIKAMI S, et al. Vibration - based structural state identification by a 1 - dimensional convolutional neural network [ J ] . Computer - aided Civil and Infrastructure Engineering, 2019, 34(9): 822 - 839. [ 6 ]秦世强 , 苏晟 , 杨睿 . 基于多标签卷积神经网络的结构损伤识别[ J ] . 建筑科学与工程学报 ,2024, 41(3) :108 - 119. QIN Shiqiang, SU Sheng, YANG Rui. Structural damage identification based on multi - label convolution neural network [ J ] . Journal of Architecture and Civil Engineering, 2024, 41(3): 108 - 119. [ 7 ]骆俊锦 , 王万良 , 王铮 , 等 . 基于时序二维化和卷积特征融合的表面肌电信号分类方法[ J ] . 模式识别与人工智能 ,2020,33(7):588 - 599. LUO Junjin, WANG Wanliang, WANG Zheng, et al . Surface electromyography classification method based on temporal two - dimensionalization and convolution feature fusion [ J ] . Pattern Recognition and Artificial Intelligence, 2020, 33(7): 588 - 599. [ 8 ] DEBAYLE J, HATAMI N, GAVET Y. Classification of time - series images using deep convolutional neural networks [ C ] //SPIE. Tenth International Conference on Machine Vision (ICMV 2017). Vienna: SPIE, 2017: 10696 - 23. [ 9 ] HUANG J S, CHEN B Q, YAO B, et al. ECG arrhythmia classification using STFT - based spectrogram and convolutional neural network [ J ] . IEEE Access, 2019, 7: 92871 - 92880. [ 10 ] WANG Z, OATES T. Encoding time series as images for visual inspection and classification using tiled convolutional neural networks [ C ] //AAAI. Workshops at the Twenty - ninth conference on artificial intelligence. Austin: AAAI, 2015: 1 - 7. [ 11 ] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [ C ] //IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770 - 778. [ 12 ]李书进 , 熊书琪 , 范沛然 , 等 . 考虑残差学习的深层卷积神经网络在结构损伤识别中的应用研究[ J ] . 工业建筑 ,2022,52(7):192 - 198. LI Shujin, XIONG Shuqi, FAN Peiran, et al. Application research on deep convolutional neural network considering residual learning in structural damage identification [ J ] . Industrial Construction, 2022, 52(7) : 192 - 198. [ 13 ] ZHAO M H, ZHONG S S, FU X Y, et al. Deep residual shrinkage networks for fault diagnosis [ J ] . IEEE Transactions on Industrial Informatics, 2020, 16(7): 4681 - 4690. [ 14 ] LI Y, CHEN H G. Image recognition based on deep residual shrinkage Network [ C ] //IEEE. 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). Guangzhou: IEEE, 2021: 334 - 337. [ 15 ] LI J Y, TAN L, ZHOU Y C, et al. Voice - face cross - modal association learning based on deep residual shrinkage network [ C ] //IEEE. 2023 IEEE International Conference on Image Processing and Computer Applications (ICIPCA). Changchun: IEEE, 2023: 140 - 145. [ 16 ] TONG J Y, TANG S Y, WU Y, et al. A fault diagnosis method of rolling bearing based on improved deep residual shrinkage networks [ J ] . Measurement, 2023, 206: 112282. [ 17 ]周赣 , 华济民 , 李铭钧 , 等 . 基于图转换和混合卷积神经网络的窃电检测方法[ J ] .2022(19):78 - 86. ZHOU Gan, HUA Jimin, LI Mingjun, et al. Detection method of stealing electricity based on graph transformation and mixed convolutional neural network [ J ] . Automation of Electric Power Systems, 2022(19): 78 - 86. [ 18 ] ZHANG C Y, BENGIO S, HARDT M, et al. Understanding deep learning (still) requires rethinking generalization [ J ] . Communications of the ACM, 2021, 64(3): 107 - 115. [ 19 ] SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning [ J ] . Journal of Big Data, 2019, 6: 60. [ 20 ] ZHAO X Q, ZHANG Y Z. An intelligent diagnosis method of rolling bearing based on multi - scale residual shrinkage convolutional neural network [ J ] . Measurement Science and Technology, 2022, 33(8): 085103. [ 21 ] HU J, SHEN L, SUN G. Squeeze - and - excitation networks [ C ] //IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132 - 7141. [ 22 ]卞文彬 , 邓艾东 , 刘东川 , 等 . 基于改进深度残差收缩网络的风电机组滚动轴承故障诊断方法[ J ] . 机械工程学报 ,2023,59(12):202 - 214. BIAN Wenbin, DENG Aidong, LIU Dongchuan, et al . Fault diagnosis method of wind turbine rolling bearing based on improved deep residual shrinkage network [ J ] . Journal of Mechanical Engineering, 2023, 59(12): 202 - 214. [ 23 ] DEVKAR R, SHIRAVALE S. A survey on multi - label classification for images [ J ] .International Journal of Computer Applications, 2017, 162(8): 39 - 42. [ 24 ] RASTOGI R, MORTAZA S. Imbalance multi - label data learning with label specific features [ J ] . Neurocomputing, 2022, 513: 395 - 408. [ 25 ]欧进萍 , 何政 , 吴斌 , 等 . 钢筋混凝土结构基于地震损伤性能的设计[ J ] . 地震工程与工程振动 ,1999, 19(1) :21 - 30. OU Jinping, HE Zheng, WU Bin, et al. Seismic damage performance - based design of reinforced concrete structures [ J ] . Earthquake Engineering and Engineering Vibration, 1999, 19(1): 21 - 30.