[ 1 ]陈肇元 , 徐有邻 , 钱稼茹 . 土建结构工程的安全性与耐久性[ J ] . 建筑技术 ,2002,33(4):248 - 253. CHEN Zhaoyuan, XU Youlin, QIAN Jiaru. Safety and durability of structural works in civil engineering [ J ] . Architecture Technology, 2002, 33(4): 248 - 253. [ 2 ]霍林生 , 李宏男 , 肖诗云 , 等 . 汶川地震钢筋混凝土框架结构震害调查与启示[ J ] . 大连理工大学学报 ,2009,49(5):718 - 723. HUO Linsheng, LI Hongnan, XIAO Shiyun, et al. Earthquake damage investigation and analysis of reinforced concrete frame structures in Wenchuan earthquake [ J ] . Journal of Dalian University of Technology, 2009, 49(5): 718 - 723. [ 3 ]建筑震后应急评估和修复技术规程 :JGJ/T 415 — 2017 [ S ] . 北京 : 中国建筑工业出版社 ,2017. Technical specification for post - earthquake urgent assessment and repair of buildings: JGJ/T 415 — 2017 [ S ] . Beijing: China Architecture & Building Press, 2017. [ 4 ] GRAYBEAL B A, PHARES B M, ROLANDER D D, et al. Visual inspection of highway bridges [ J ] . Journal of Nondestructive Evaluation, 2002, 21(3): 67 - 83. [ 5 ]韩晓健 , 赵志成 . 基于计算机视觉技术的结构表面裂缝检测方法研究[ J ] . 建筑结构学报 ,2018,39( 增 1):418 - 427. HAN Xiaojian, ZHAO Zhicheng. Research on detection method of structural surface cracks based on computer vision technology [ J ] . Journal of Building Structures, 2018, 39(S1): 418 - 427. [ 6 ] ZAKERI H, NEJAD F M, FAHIMIFAR A. Image based techniques for crack detection, classification and quantification in asphalt pavement: a review [ J ] . Archives of Computational Methods in Engineering, 2017, 24(4): 935 - 977. [ 7 ] HAN X J, ZHAO Z C, CHEN L K, et al. Structural damage - causing concrete cracking detection based on a deep - learning method [ J ] . Construction and Building Materials, 2022, 337: 127562. [ 8 ]周颖 , 刘彤 . 基于计算机视觉的混凝土裂缝识别[ J ] . 同济大学学报 ( 自然科学版 ),2019,47(9):1277 - 1285. ZHOU Ying, LIU Tong. Computer vision - based crack detection and measurement on concrete structure [ J ] . Journal of Tongji University (Natural Science), 2019, 47(9): 1277 - 1285. [ 9 ]杨国俊 , 齐亚辉 , 石秀名 . 基于数字图像技术的桥梁裂缝检测综述[ J ] . 吉林大学学报 ( 工学版 ),2024, 54(2) :313 - 332. YANG Guojun, QI Yahui, SHI Xiuming. Review of bridge crack detection based on digital image technology [ J ] . Journal of Jilin University (Engineering and Technology Edition), 2024, 54(2): 313 - 332. [ 10 ] ALI L, ALNAJJAR F, KHAN W, et al. Bibliometric analysis and review of deep learning - based crack detection literature published between 2010 and 2022 [ J ] . Buildings, 2022, 12(4): 432. [ 11 ]杨铄 , 许清风 , 王卓琳 . 基于卷积神经网络的结构损伤识别研究进展[ J ] . 建筑科学与工程学报 ,2022, 39(4) :38 - 57. YANG Shuo, XU Qingfeng, WANG Zhuolin. Research progress on structural damage detection based on convolutional neural networks [ J ] . Journal of Architecture and Civil Engineering, 2022, 39(4): 38 - 57. [ 12 ] DOGAN G, HAKAN ARSLAN M, ILKI A. Detection of damages caused by earthquake and reinforcement corrosion in RC buildings with deep transfer learning [ J ] . Engineering Structures, 2023, 279: 115629. [ 13 ]刘宇飞 , 樊健生 , 聂建国 , 等 . 结构表面裂缝数字图像法识别研究综述与前景展望[ J ] . 土木工程学报 ,2021,54(6):79 - 98. LIU Yufei, FAN Jiansheng, NIE Jianguo, et al. Review and prospect of digital - image - based crack detection of structure surface [ J ] . China Civil Engineering Journal, 2021, 54(6): 79 - 98. [ 14 ] BAI Z L, LIU T J, ZOU D J, et al. Image - based reinforced concrete component mechanical damage recognition and structural safety rapid assessment using deep learning with frequency information [ J ] . Automation in Construction, 2023, 150: 104839. [ 15 ] CHEN L K, CHEN W X, WANG L, et al. Convolutional neural networks (CNNs) - based multi - category damage detection and recognition of high - speed rail (HSR) reinforced concrete (RC) bridges using test images [ J ] . Engineering Structures, 2023, 276: 115306. [ 16 ] MENG S Q, GAO Z Y, ZHOU Y, et al. Real - time automatic crack detection method based on drone [ J ] . Computer - aided Civil and Infrastructure Engineering, 2023, 38(7): 849 - 872. [ 17 ] LIU Y F, NIE X, FAN J S, et al. Image - based crack assessment of bridge piers using unmanned aerial vehicles and three - dimensional scene reconstruction [ J ] . Computer - aided Civil and Infrastructure Engineering, 2020, 35(5): 511 - 529. [ 18 ] ZHAO S Z, KANG F, LI J J. Concrete dam damage detection and localisation based on YOLOv5s - HSC and photogrammetric 3D reconstruction [ J ] . Automation in Construction, 2022, 143: 104555. [ 19 ]国务院,中央军委 . 无人驾驶航空器飞行管理暂行条例[ EB/OL ] . ( 2023 - 06 - 28 )[ 2024 - 04 - 15 ] .https://www.gov.cn/zhengce/zhengceku/202306/content_6888800.htm. State Council, Central Military Commission. Regulations on the administration of unmanned aerial vehicle [ EB/OL ] . ( 2023 - 06 - 28 )[ 2024 - 04 - 15 ] . https://www.gov.cn/zhengce/zhengceku/202306/content_6888800.htm. [ 20 ]杨娜 , 张翀 , 李天昊 . 基于无人机与计算机视觉的中国古建筑木结构裂缝监测系统设计[ J ] . 工程力学 ,2021,38(3):27 - 39. YANG Na, ZHANG Chong, LI Tianhao. Design of crack monitoring system for Chinese ancient wooden buildings based on UAV and CV [ J ] . Engineering Mechanics, 2021, 38(3): 27 - 39. [ 21 ]工程结构数字图像法检测技术规程 :T/CECS 1114 — 2022 [ S ] . 北京 : 中国建筑工业出版社 ,2022. Technical specification for digital image inspection of engineering structures: T/CECS 1114 — 2022 [ S ] . Beijing: China Architecture & Building Press, 2022. [ 22 ] CHOW J K, LIU K F, TAN P S, et al. Automated defect inspection of concrete structures [ J ] . Automation in Construction, 2021, 132: 103959. [ 23 ] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision [ M ] . Cambridge: Cambridge University Press, 2004. [ 24 ] KIM B, CHO S. Image - based concrete crack assessment using mask and region - based convolutional neural network [ J ] . Structural Control and Health Monitoring, 2019, 26(8): e2381. [ 25 ]宋成浩 , 陈书成 , 胡晓斌 , 等 . 基于计算机视觉的往复荷载作用下钢筋混凝土柱裂缝监测[ J ] . 工业建筑 ,2022,52(10):53 - 60. SONG Chenghao, CHEN Shucheng, HU Xiaobin, et al . Crack monitoring of RC columns under cyclic loading based on computer vision [ J ] . Industrial Construction, 2022, 52(10): 53 - 60. [ 26 ] REN S Q, HE K M, GIRSHICK R, et al. Faster R - CNN: towards real - time object detection with region proposal networks [ J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137 - 1149. [ 27 ] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [ C ] //IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770 - 778. [ 28 ] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection [ C ] // IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017:936 - 944. [ 29 ] KALFARISI R, WU Z Y, SOH K. Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization [ J ] . Journal of Computing in Civil Engineering, 2020, 34(3): 04020010. [ 30 ]章毓晋 . 计算机视觉教程[ M ] .2 版 . 北京 : 人民邮电出版社 ,2017. ZHANG Yujin. A course of computer vision [ M ] . 2nd ed. Beijing: Posts & Telecom Press, 2017. [ 31 ] OTSU N. A threshold selection method from gray - level histograms [ J ] . IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62 - 66. [ 32 ]PAYAB M, ABBASINA R, KHANZADI M. A brief review and a new graph - based image analysis for concrete crack quantification [ J ] . Archives of Computational Methods in Engineering, 2019, 26(2): 347 - 365. [ 33 ]建筑抗震试验规程 :JGJ/T 101 — 2015 [ S ] . 北京 : 中国建筑工业出版社 ,2015. Specification for seismic test of buildings: JGJ/T 101 — 2015 [ S ] . Beijing: China Architecture & Building Press, 2015. [ 34 ]建 ( 构 ) 筑物地震破坏等级划分 :GB/T 24335 — 2009 [ S ] . 北京 : 中国标准出版社 ,2009. Classification of earthquake damage to buildings and special structures: GB/T 24335 — 2009 [ S ] . Beijing: Standards Press of China, 2009. [ 35 ] OHKUBO M. Current Japanese system on seismic capacity and retrofit techniques for existing reinforced concrete buildings and post - earthquake damage inspection and restoration techniques [ R ] . San Diego: Department of Applied Mechanics and Engineering Sciences, University of California, 1991. [ 36 ] SINHA R, GOYAL A. A national policy for seismic vulnerability assessment of buildings and procedure for rapid visual screening of buildings for potential seismic vulnerability [ R ] . Hindistan: Ministry of Home Affairs, Government of India, 2004. [ 37 ]房屋完损等级评定标准(试行) : 城住字( 1984 )第 678 号[ S ] . 北京 : 城乡建设环境保护部 , 1984. Standard for assessing the level of housing deterioration(trial): Cheng Zhuzi (1984) No.678 [ S ] . Beijing: Ministry of Urban and Rural Construction and Environmental Protection, 1984. [ 38 ] ZOU D J, ZHANG M, BAI Z L, et al. Multicategory damage detection and safety assessment of post - earthquake reinforced concrete structures using deep learning [ J ] . Computer - aided Civil and Infrastructure Engineering, 2022, 37(9): 1188 - 1204.