[ 1 ] WANG D, REN B Y, CUI B, et al. Real-time monitoring for vibration quality of fresh concrete using convolutional neural networks and IoT technology [ J ] . Automation in Construction, 2021, 123: 103510. [ 2 ] REN B Y, WANG H D, WANG D, et al. Vision method based on deep learning for detecting concrete vibration quality [ J ] . Case Studies in Construction Materials, 2023, 18: e02132. [ 3 ] LI T, WANG H, PAN D X, et al. A machine vision approach with temporal fusion strategy for concrete vibration quality monitoring [ J ] . Applied Soft Computing, 2024, 160: 111684. [ 4 ] 王 栋 , 关 涛 , 杨 帅 , 等 . 空天地一体化感知下的混凝土振捣质量智能监控[ J ] . 硅酸盐学报 ,2023, 51(5) :1219-1227. WANG Dong, GUAN Tao, YANG Shuai, et al. Intelligent monitoring of concrete vibration quality based on space-air-ground integrated perception [ J ] . Journal of the Chinese Ceramic Society, 2023, 51(5) : 1219-1227. [ 5 ] GONG J, YU Y, KRISHNAMOORTHY R, et al. Real-time tracking of concrete vibration effort for intelligent concrete consolidation [ J ] . Automation in Construction, 2015, 54: 12-24. [ 6 ] TIAN Z H, SUN X, SU W H, et al. Development of real-time visual monitoring system for vibration effects on fresh concrete [ J ] . Automation in Construction, 2019, 98: 61-71. [ 7 ] QUAN Y H, WANG F L. Machine learning-based real-time tracking for concrete vibration [ J ] . Automation in Construction, 2022, 140: 104343. [ 8 ] 田正宏 , 边 策 , 毛 龙 , 等 . 混凝土振捣动态可视化监测系统开发研究[ J ] . 建筑材料学报 ,2013,16(3):508-513. TIAN Zhenghong, BIAN Ce, MAO Long, et al. Development research on visual kinematic monitoring system of concrete vibrating process [ J ] . Journal of Building Materials, 2013, 16(3): 508-513. [ 9 ] TIAN Z H, BIAN C. Visual monitoring method on fresh concrete vibration [ J ] . KSCE Journal of Civil Engineering, 2014, 18(2): 398-408. [ 10 ]刘亚洁 . 基于立体视觉的混凝土振捣质量监测系统的开发[ D ] . 哈尔滨 : 哈尔滨工业大学 ,2018. ?LIU Yajie. Develop of concrete vibration monitoring system based on stereo vision [ D ] . Harbin: Harbin Institute of Technology, 2018. [ 11 ] LI J J, TIAN Z H, MA Y S, et al. Feedback control system for vibration construction of fresh concrete [ J ] . Mechanical Systems and Signal Processing, 2024, 216: 111461. [ 12 ]LEE S G, SKIBNIEWSKI M J. Monitoring of concrete placement and vibration for real-time quality control [ C ] //CCC. Proceedings of the Creative Construction Conference 2019. Budapest: Budapest University of Technology and Economics, 2019: 67-76. [ 13 ] LEE S, SKIBNIEWSKI M J. Automated monitoring and warning solution for concrete placement and vibration workmanship quality issues [ J ] . AI in Civil Engineering, 2022, 1(1): 4. [ 14 ] 边 策 , 崔海涛 , 田正宏 , 等 . 基于受振能量密度的新拌混凝土密实性实时监控方法[ J ] . 水电能源科学 ,2025,43(5):116-120. BIAN Ce, CUI Haitao, TIAN Zhenghong, et al. Real-time monitoring method for compactness of fresh concrete based on vibration energy density [ J ] .Water Resources and Power, 2025, 43(5):116-120. [ 15 ] LI T, WANG H, TAN J S, et al. Intelligent quality assessment of concrete vibration using computer vision and large language models [ J ] . Automation in Construction, 2025, 180: 106507. [ 16 ] JIANG D Q, KONG L J, WANG H, et al. Precise control mode for concrete vibration time based on attention-enhanced machine vision [ J ] . Automation in Construction, 2024, 158: 105232. [ 17 ] 李梓巍 , 张少朋 , 牛远志 , 等 . 高铁预制箱梁混凝土振捣技术及智能化发展[ J ] . 铁道科学与工程学报 ,2024,21(12):4851-4860. LI Ziwei, ZHANG Shaopeng, NIU Yuanzhi, et al. Concrete vibrating technology and intelligent development of prefabricated box girders for high speed railway [ J ] . Journal of Railway Science and Engineering, 2024, 21(12): 4851-4860. [ 18 ] 姜林峰 , 田正宏 , 王开贵 , 等 . 基于电阻率法的混凝土振捣离析程度研究[ J ] . 混凝土 ,2023(1):41-44. JIANG Linfeng, TIAN Zhenghong, WANG Kaigui, et al. Estimating the segregation of concrete under vibration based on electrical method [ J ] . Concrete, 2023(1): 41-44. [ 19 ] FAN S, HE T, LI W H, et al. Machine learning-based classification of quality grades for concrete vibration behaviour [ J ] . Automation in Construction, 2024, 167: 105694. [ 20 ] 田正宏 , 马元山 , 李佳杰 . 混凝土振捣密实性研究进展[ J ] . 建筑材料学报 ,2024,27(1):46-57. TIAN Zhenghong, MA Yuanshan, LI Jiajie. Research progress on vibration compaction of concrete [ J ] . Journal of Building Materials, 2024, 27(1): 46-57. [ 21 ] 钟登华 , 沈子洋 , 王佳俊 , 等 . 基于实时监控的混凝土坝振捣施工质量动态评价研究[ J ] . 水利学报 ,2018,49(7):775-786. ZHONG Denghua, SHEN Ziyang, WANG Jiajun, et al . Study on dynamic evaluation of vibration quality of concrete dam based on real-time monitoring [ J ] .Journal of Hydraulic Engineering, 2018, 49(7): 775-786. [ 22 ] ZHAO X K, HUANG Y M, DONG W, et al. A review of compaction mechanisms, influencing factors,and advanced methods in concrete vibration technology [ J ] . Journal of Building Engineering, 2024, 93: 109847. [ 23 ] 王晓玲 , 王栋 , 任炳昱 , 等 . 高拱坝混凝土振捣机器人系统研发及应用[ J ] . 水利学报 ,2022,53(6):631-643,654. WANG Xiaoling, WANG Dong, REN Bingyu, et al. Development and application of concrete vibrating robot system for high arch dam [ J ] .Journal of Hydraulic Engineering, 2022, 53(6): 631-643, 654. [ 24 ] 混凝土结构工程施工规范 :GB 50666 — 2011 [ S ] . 北京 : 中国建筑工业出版社 ,2012. Code for construction of concrete structures: GB 50666 — 2011 [ S ] . Beijing: China Architecture & Building Press, 2012. [ 25 ] 陈洛轩 , 林成创 , 郑招良 , 等 .Transformer 在计算机视觉场景下的研究综述[ J ] . 计算机科学 ,2023,50(12):130-147. CHEN Luoxuan, LIN Chengchuang, ZHENG Zhao-liang, et al. Review of transformer in computer vision [ J ] . Computer Science, 2023, 50(12): 130-147. [ 26 ] 张应军 , 江永全 , 杨 燕 , 等 . 基于深度卷积神经网络的未知复合故障诊断[ J ] . 中国科技论文 ,2019, 14(2) :204-209. ZHANG Yingjun, JIANG Yongquan, YANG Yan, et al. Unknown compound fault diagnosis based on deep convolutional neural network [ J ] . China Sciencepaper, 2019, 14(2): 204-209. [ 27 ] 杨 铄 , 许清风 , 王卓琳 . 基于卷积神经网络的结构损伤识别研究进展[ J ] . 建筑科学与工程学报 ,2022, 39(4) :38-57. YANG Shuo, XU Qingfeng, WANG Zhuolin. Research progress on structural damage detection based on convolutional neural networks [ J ] . Journal of Architecture and Civil Engineering, 2022, 39(4): 38-57. [ 28 ] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks [ EB/OL ] . (2019-05-28) [ 2025-03-06 ] . https://arxiv.org/abs/1905.119046. [ 29 ] DUAN H D, WANG J Q, CHEN K, et al. PYSKL: towards good practices for skeleton action recognition [ C ] //ACM. Proceedings of the 30th ACM International Conference on Multimedia. Lisbon: ACM, 2022: 7351-7354. [ 30 ] 张 宗 , 石 林 . 基于 STGCN 算法的视频图像人体动作轮廓动态识别[ J ] . 现代电子技术 ,2024,47(18):144-148. ZHANG Zong, SHI Lin. STGCN algorithm based dynamic recognition of human motion contour in video image [ J ] . Modern Electronics Technique, 2024, 47(18) : 144-148.