[ 1 ] KOCH C, GEORGIEVA K, KASIREDDY V, et al. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure [ J ] . Advanced Engineering Informatics, 2015, 29(2): 196 - 210. [ 2 ] AHLBORN T M, HARRIS D K, BROOKS C, et al. Remote sensing technologies for detectig bridge deterioration and condition assessment [ EB/OL ] . (2021 ?- 07 ?- 16) [ 2025 - 07 - 14 ] . https://scispace.com/papers/remote - sensing technologies - for - detecting - bridge - 17n6 drq575. [ 3 ] WU C F, SUN K K, XU Y M, et al. Concrete crack detection method based on optical fiber sensing network and microbending principle [ J ] . Safety Science, 2019, 117: 299 - 304. [ 4 ] JUNG J Y, YOON H J, CHO H W. Research of remote inspection method for river bridge using sonar and visual system [ J ] . Journal of the Korea Academia - industrial Cooperation Society, 2017, 18(5): 330 - 335. [ 5 ] HOU S T, JIAO D, DONG B, et al. Underwater inspection of bridge substructures using sonar and deep convolutional network [ J ] . Advanced Engineering Informatics, 2022, 52: 101545. [ 6 ] ?GHANI A S A, ISA N A M. Homomorphic filtering with image fusion for enhancement of details and homogeneous contrast of underwater image [ J ] .Indian Journal of Geo - marine Sciences, 2015, 44(12): 1904 - 1919. [ 7 ] LAND E H, MCCANN J J. Lightness and retinex theory [ J ] . Journal of the Optical Society of America, 1971, 61(1): 1 - 11. [ 8 ] PAN X X, LI C L, PAN Z G, et al. Low ?- light image enhancement method based on retinex theory by improving illumination map [ J ] . Applied Sciences, 2022, 12(10): 5257. [ 9 ] 杨铄 , 许清风 , 王卓琳 . 基于卷积神经网络的结构损伤识别研究进展[ J ] . 建筑科学与工程学报 ,2022, 39(4) :38 - 57. YANG Shuo, XU Qingfeng, WANG Zhuolin. Research progress on structural damage detection based on convolutional neural networks [ J ] . Journal of Architecture and Civil Engineering, 2022, 39(4): 38 - 57. [ 10 ] 丁 威 , 马亥波 , 舒江鹏 , 等 . 基于残差网络的混凝土结构病害分类识别研究[ J ] . 建筑科学与工程学报 ,2022,39(4):127 - 136. DING Wei, MA Haibo, SHU Jiangpeng, et al. Research on classification and recognition of concrete structure diseases based on residual network [ J ] . Journal of Architecture and Civil Engineering, 2022, 39(4): 127 - 136. [ 11 ] WANG Y, ZHANG J, CAO Y, et al. A deep CNN method for underwater image enhancement [ C ] //IEEE. 2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE, 2017: 1382 - 1386. [ 12 ] GUO T X, WEI Y H, SHAOH, et al. Research on underwater target detection method based on improved MSRCP and YOLOv3 [ C ] //IEEE. 2021 IEEE International Conference on Mechatronics and Automation (ICMA). Takamatsu: IEEE, 2021: 1158 - 1163. [ 13 ] 夏 坚 , 周利君 , 张 伟 . 基于迁移学习与 VGG16 深度神经网络的建筑物裂缝检测方法[ J ] . 福建建设科技 ,2022(1):19 - 22,60. XIA Jian, ZHOU Lijun, ZHANG Wei, et al. Building crack detection method based on transfer learning and VGG16 deep neural network [ J ] . Fujian Construction Science & Technology, 2022(1): 19 - 22, 60. [ 14 ]周 中 , 闫龙宾 , 张俊杰 , 等 . 基于 YOLOX - G 算法的隧道裂缝实时检测[ J ] . 铁道科学与工程学报 ,2023,20(7):2751 - 2762. ZHOU Zhong, YAN Longbin, ZHANG Junjie, et al . Real- time detection of tunnel cracks based on YOLOX - G algorithm [ J ] . Journal of Railway Science and Engineering, 2023, 20(7): 2751 - 2762. [ 15 ] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image - to - image translation using cycle - consistent adversarial networks [ C ] //IEEE. 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2242 - 2251. [ 16 ] LUCAS A, LOPEZ - TAPIA S, MOLINA R, et al. Generative adversarial networks and perceptual losses for video super- resolution [ J ] . IEEE Transactions on Image Processing, 2019, 28(7): 3312 - 3327. [ 17 ] LI M, LI M S, LIU B L, et al. Spatio - temporal traffic flow prediction based on coordinated attention [ J ] . Sustainability, 2022, 14(12): 7394. [ 18 ] MA R, WANG J, ZHAO W, et al. Identification of maize seed varieties using MobileNetV2 with improved attention mechanism CBAM [ J ] . Agriculture, 2023, 13(1): 11. [ 19 ] SAHA R, KIM K D. Add weighted algorithm based on the PICA and RBF neural network for image fusion [ C ] //IEEE. 2017 International Conference on Electrical , Computer and Communication Engineering (ECCE). Cox s Bazar: IEEE, 2017: 784 - 787. [ 20 ] YANG M, SOWMYA A. An underwater color image quality evaluation metric [ J ] . IEEE Transactions on Image Processing, 2015, 24(12): 6062 - 6071. [ 21 ] PANETTA K, GAO C, AGAIAN S. Human - visual - system - inspired underwater image quality measures [ J ] . IEEE Journal of Oceanic Engineering, 2016, 41(3) : 541 - 551.