|Table of Contents|

Review of in-situ sintering forming technology for lunar soil(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2026年01期
Page:
95-111
Research Field:
综述
Publishing date:

Info

Title:
Review of in-situ sintering forming technology for lunar soil
Author(s):
WANG Zhifeng LIU Yili NIE Shaofeng LI Jianxing
1. School of Highway, Chang‘’an University, Xi’an 710064, Shaanxi, China; 2. School of Civil Engineering, Changan University, Xi’an 710061, Shaanxi, China; 3. School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
Keywords:
lunar soil in-situ resource utilization in-situ sintering technology additive construction technology
PACS:
TU502
DOI:
10.19815/j.jace.2025.09016
Abstract:
In-situ resource utilization has gradually become a key technology for reducing the cost and risk of lunar construction. Lunar soil can be transformed into sturdy building materials on the lunar surface through in-situ sintering technology, which has attracted widespread attention due to its high efficiency, energy saving and other advantages. In order to gain a deeper understanding of the application and research progress of insitu sintering technology, the particle characteristics and mineral composition of lunar soil and simulated lunar soil at home and abroad were first summarized. Based on this, several typical insitu sintering methods were systematically sorted out, including microwave sintering, laser sintering, solar sintering, and electron beam sintering. The results show that microwave sintering has the advantages of uniform heating, high efficiency, and great potential, but it is prone to problems such as thermal runaway and high porosity in a vacuum environment. Laser sintering has high precision and is suitable for manufacturing small components, but the equipment is complex and consumes a lot of energy. Solar sintering can rely on clean energy and is suitable for largescale surface hardening, but it is significantly affected by day, night, and shaded areas. Electron beam sintering has high energy density and is suitable for the lunar vacuum environment, but the equipment complexity is high and relies heavily on electricity, and the formed body is prone to brittleness. Overall, various sintering methods have their own advantages and disadvantages, and future lunar architecture may require a combination of multiple technologies to achieve efficient, safe, and sustainable construction goals. In order to widely apply insitu sintering technology in lunar base construction, future research should further optimize the sintering process, develop efficient equipment suitable for the lunar environment, and conduct indepth studies on the characteristics of lunar soil materials.

References:

1]刘建忠 , 李雄耀 , ,.月球原位资源利用及关键科学与技术问题[J.中国科学基金,2022,36(6):907 -918.

LIU Jianzhong, LI Xiongyao, ZHU Kai, et al. Key science and technology issues of lunar in situ resource utilizationJ. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907 -918.

2 欧阳自远.我国月球探测的总体科学目标与发展战略[J.地球科学进展,2004,19(3):351 -358.

OUYANG Ziyuan. Scientific objectives of Chinese lunar exploration project and development strategyJ. Advances in Earth Science, 2004, 19(3): 351 -358.

3 邹永廖,欧阳自远, ,.月球表面的环境特征[J.第四纪研究,2002,22(6):533 -539.

ZOU Yongliao, OUYANG Ziyuan, XU Lin, et al. Lunar surface environmental characteristicsJ. Quaternary Sciences, 2002, 22(6): 533 -539.

4 , ,任德鹏,.月面和近月空间环境及其影响[J.航天器工程,2010,19(5):76 -81.

CHEN Lei, LI Fei, REN Depeng, et al. Lunar surface and near lunar space environments and their effectsJ. Spacecraft Engineering, 2010, 19(5): 76 -81.

5 SANDERS G B, LARSON W E. Progress made in lunar in situ resource utilization under NASAs exploration technology and development programJ. Journal of Aerospace Engineering, 2012, 26(1): 5 -17.

6 贺新星, , ,.模拟月壤研究进展及CUG -1A模拟月壤[J.地质科技情报,2011,30(4):137 -142.

HE Xinxing, XIAO Long, HUANG Jun, et al. Lunar soil simulant development and lunar soil simulant CUG -1AJ. Bulletin of Geological Science and Technology, 2011, 30(4): 137 -142.

7 张日晗,王统才, ,.面向月面原位制造/建造的月壤成型利用技术综述[J.宇航学报,2024,45(6):815 -830.

ZHANG Rihan, WANG Tongcai, LI Liang, et al. In -situ manufacturing and utilization of lunar regolith for fabrication/construction on the lunar surface: a reviewJ. Journal of Astronautics, 2024, 45(6): 815 -830.

8 FATERI M, COWLEY A, KOLBE M, et al. Localized microwave thermal posttreatment of sintered samples of lunar simulantJ. Journal of Aerospace Engineering, 2019, 32(4): 04019051.

9 KIM Y J, RYU B H, JIN H, et al. Microstructural, mechanical, and thermal properties of microwave -sintered KLS -1 lunar regolith simulantJ. Ceramics International, 2021, 47(19): 26891 -26897.

10 GHOLAMI S, ZHANG X, KIM Y J, et al. Hybrid microwave sintering of a lunar soil simulant: effects of processing parameters on microstructure characteristics and mechanical propertiesJ. Materials & Design, 2022, 220: 110878.

11 MEURISSE A, MAKAYA A, WILLSCH C, et al. Solar 3D printing of lunar regolithJ. Acta Astronautica, 2018, 152: 800 -810.

12 FATERI M, MEURISSE A, SPERL M, et al. Solar sintering for lunar additive manufacturingJ. Journal of Aerospace Engineering, 2019, 32(6): 04019101.

13 LIM S, BOWEN J, DEGLI -ALESSANDRINI G, et al. Investigating the microwave heating behaviour of lunar soil simulant JSC -1A at different input powersJ. Scientific Reports, 2021, 11: 2133.

14 KG-*4LIM S, DEGLI -ALESSANDRINI G, BOWEN J, et al. The microstructure and mechanical properties of microwave -heated lunar simulants at different input powers under vacuumJ. Scientific Reports, 2023, 13: 1804.

15 GATTO A, DEFANTI S, BASSOLI E, et al. Preliminary study on localized microwave sintering of lunar regolithJ. Acta Astronautica, 2024, 218: 126 -136.

16 LIM S, ANAND M. Numerical modelling of the microwave heating behaviour of lunar regolithJ. Planetary and Space Science, 2019, 179: 104723.

17 XU J, CAO H Z, SUN X Y, et al. 3D printing of hypothetical brick by selective laser sintering using lunar regolith simulant and ilmenite powdersC//PU M B, LI X, MA X L, et al. 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction -limited Plasmonic Lithography and Innovative Manufacturing Technology. Bellingham: SPIE, 2018: 1084208.

18 BALLA V K, ROBERSON L B, OCONNOR G W, et al. First demonstration on direct laser fabrication of lunar regolith partsJ. Rapid Prototyping Journal, 2012, 18(6): 451 -457.

19 FATERI M, GEBHARDT A. Process parameters development of selective laser melting of lunar regolith for on -site manufacturing applicationsJ. International Journal of Applied Ceramic Technology, 2015, 12: 46 -52

20 郑永春,欧阳自远,王世杰,. 月壤的物理和机械性质[J. 矿物岩石,2004,24(4): 14 -19.

ZHENG Yongchun, OUYANG Ziyuan, WANG Shijie, et al. Physical and mechanical properties of lunar regolithJ. Mineralogy and Petrology, 2004, 24(4): 14 -19.

21 胡家骏,俞可权,郭晓潞.基于“嫦娥五号”月壤的TJC -1模拟月壤研制[J.航天器环境工程,2024,41(4):389 -396.

HU Jiajun, YU Kequan, GUO Xiaolu. Preparation of TJC -1 lunar regolith simulant based on ChangE -5 lunar soilJ. Spacecraft Environment Engineering, 2024, 41(4): 389 -396.

22 蒋明镜,李立青.TJ -1模拟月壤的研制[J.岩土工程学报,2011,33(2):209 -214.

JIANG Mingjing, LI Liqing. Development of TJ -1 lunar soil simulantJ. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 209 -214.

23 周宁希, ,黄珏皓,.磁性高钛模拟月壤IRSM -1的研制及其性质研究[J.岩土工程学报,2023,45(1):110 -113.

ZHOU Ningxi, CHEN Jian, HUANG Juehao, et al. Development and properties of a magnetic high -titanium lunar regolith simulant IRSM -1J. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 110 -113.

24 孙晓燕,郑肖威,王海龙,.面向原位建造技术的月壤模拟与制备[J.建筑材料学报,2025,28(1):72 -81.

SUN Xiaoyan, ZHENG Xiaowei, WANG Hailong, et al. Lunar regolith simulants and preparation aimed at in -situ construction technologyJ. Journal of Building Materials, 2025, 28(1): 72 -81.

25 LI C, GUO Z, LI Y, et al. Impact -driven disproportionation origin of nanophase iron particles in ChangE -5 lunar soil sampleJ. Nature Astronomy, 2022, 6: 1156 -1162.

26 LACZZNIAK D L, THOMPSON M S, CHRISTOFFERSEN R, et al. Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analysesJ. Icarus, 2021, 364: 114479.

27 PALAMAKUMBURE L, MIZOHATA K, FLAND -EROVK, et al. Simulation of space weathering on asteroid spectra through hydrogen ion irradiation of meteoritesJ. The Planetary Science Journal, 2023, 4(4): 72.

28 LANTZ C, BRUNETTO R, BARUCCI M A, et al. Ion irradiation of the Murchison meteorite: visible to mid -infrared spectroscopic resultsJ. Astronomy & Astrophysics, 2015, 577: A41.

29 WU Y X, LI X Y, YAO W Q, et al. Impact characteristics of different rocks in a pulsed laser irradiation experiment: simulation of micrometeorite bombardment on the moonJ. Journal of Geophysical Research: Planets, 2017, 122(10): 1956 -1967.

30 LOEFFLER M J, DUKES C A, CHRISTOFFERSEN R, et al. Space weathering of silicates simulated by successive laser irradiation: in situ reflectance measurements of Fo90, Fo99+, and SiO2J. Meteoritics & Planetary Science, JP22016, 51(2): 261 -275.

31 TAYLOR L A, THOMAS T M. Microwave sintering of lunar soil: properties, theory, and practiceJ. JP2Journal of Aerospace Engineering, 2005, 18(3): 188 -196.

32 ,王世杰,李雄耀,.月壤钛铁矿微波烧结制备月球基地结构材料的初步设想[J.矿物学报,2009,29(2):229 -234.

TANG Hong, WANG Shijie, LI Xiongyao, et al. A preliminary design for producing construction materials for the lunar base: microwave sintering ilmenite of lunar soilJ. JP2Acta Mineralogica Sinica, 2009, 29(2): 229 -234.

33 TANG H, WANG S J, LI X Y. Simulation of nanophase iron production in lunar space weatheringJ. Planetary and Space Science, 2010, 58(1): 322 -327.

34 ZHOU C J, TANG H, LI X Y, et al. Effects of ilmenite on the properties of microwave -sintered lunar regolith simulantJ. Journal of Aerospace Engineering, 2021, 34(6): 06021006 -2.

35 MCKAY D S, CARTER J L, BOLES W W, et al. JSC -1: a new lunar soil simulantJ. Engineering, Construction, and Operations in Space IV, 1994: 857 -866.

36 WEIBLEN P W, MURAWA M J, REID K J. Preparation of simulants for lunar surface materialsJ. Engineering, Construction, and Operations in Space, 1990: 98 -106.

37 LI C Y, XIE K Y, LIU A M, SHI Z N. The preparation and characterization of NEU -1 lunar soil simulantsJ. Energy Materials, 2019(71): 1471 -1476.

[ 38 郑永春,王世杰,冯俊明,.CAS -1模拟月壤[J.矿物学报,2007,27(3/4):571 -578.

ZHENG Yongchun, WANG Shijie, FENG Junming, et al. CAS -1 lunar soil simulantJ. Acta Mineralogica Sinica, 2007, 27(3/4): 571 -578.

39 RASERA J N, CILLIERS J J, LAMAMY J A, et al. The beneficiation of lunar regolith for space resource utilisation: a reviewJ. Planetary and Space Science, 2020, 186: 104879.

40 CARRIER W D. Particle size distribution of lunar soilJ. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 956 -959.

41 SLYUTA E N. Physical and mechanical properties of the lunar soil (a review)J. Solar System Research, 2014, 48(5): 330 -353.

42 ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by ChangE -5 missionJ. Science China Physics, Mechanics & Astronomy, 2021, 65(2): 229511.

43 LING Z, JOLLIFF B, WANG A, et al. Correlated compositional and mineralogical investigations at the Change -3 landing siteJ. Nature Communications, 2015, 6: 8880.

44 LIU B, SUN P, YAO W, et al. Research progress on the adaptability of lunar regolith simulant -based composites and lunar base construction methodsJ. International Journal of Mining Science and Technology, 2024, 34: 1341 -1363.

45 樊世超, ,向树红,.月面地形地貌环境模拟初步研究[J.航天器环境工程,2007,24(1):15 -20.

FAN Shichao, JIA Yang, XIANG Shuhong, et al. A preliminary study on simulation of lunar surface terrainJ. Spacecraft Environment Engineering, 2007, 24(1): 15 -20.

46 ,潘梓凌.月球“土特产”:从阿波罗11号到嫦娥5号[J.矿物岩石地球化学通报,2023,42(6):1424 -1438.

YANG Wei, PAN Ziling. Lunar native: from Apollo11 to Change 5J. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(6): 1424 -1438.

47 LAUL J C, RODE O D, SIMON S B, et al. The lunar regolith: chemistry and petrology of Luna 24 grain size fractionsJ. Geochimica et Cosmochimica Acta, 1987, 51(3): 661 -673.

48 LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the ChangE -5 missionJ. National Science Review, JP22022, 9(2): nwab188.

49 GROMOV V. Physical and mechanical properties of lunar and planetary soilsJ. Earth, Moon, and Planets, 1998, 80(1/2/3): 51 -72

50 ,许业文, .陶瓷微波烧结技术研究进展[J.硅酸盐通报,2006,25(3):132 -135.

LIN Cong, XU Yewen, XU Zheng. Development of microwave sintering technology in ceramic materialsJ. Bulletin of the Chinese Ceramic Society, 2006, 25(3): 132 -135.

51 WROE R, ROWLEY A T. Evidence for a non -thermal microwave effect in the sintering of partially stabilized zirconiaJ. Journal of Materials Science, 1996, 31(8): 2019 -2026.

52 刘炳燕,尹洪峰, ,.高温透波材料在微波烧结领域的应用及研究进展[J.硅酸盐学报,2025,53(3):700 -717.

LIU Bingyan, YIN Hongfeng, TANG Yun, et al. Progress on high -temperature wave -transmitting materials in microwave sinteringJ. Journal of the ChineseCeramic Society, 2025, 53(3): 700 -717.

53 AMAN B, ACHARYA S, REEJA -JAYAN B. Making the case for scaling up microwave sintering of ceramicsJ. Advanced Engineering Materials, 2024, 26(9): 2302065.

54 HAYNE P O, BANDFIELD J L, SIEGLER M A, et al. Global regolith thermophysical properties of the moon from the diviner lunar radiometer experimentJ. Journal of Geophysical Research: Planets, 2017, 122(12): 2371 -2400.

55 SAKATANI N, OGAWA K, ARAKAWA M, et al. Thermal conductivity of lunar regolith simulant JSC -1A under vacuumJ. Icarus, 2018, 309: 13 -24.

56 HOWE S, WILCOX B, MCQUIN C, et al. Faxing structures to the moon: freeform additive construction system (FACS)C//AIAA. AIAA SPACE 2013 Conference and Exposition. Red Hook: Curran Associate, 2013: 1951 -1973.

57 HOWE S, WILCOX B, MARTIN B, et al. ATHLETE as a mobile ISRU and regolith construction platformC//MALLA R B, AGUI J H, VAN SUSANTE P J. Earth and Space 2016: Engineering for Extreme Environment. Virginia: American Society of Civil Engineers, 2016: 560 -575.

58 REITZ B, LOTZ C, GERDES N, et al. Additive manufacturing under lunar gravity and microgravityJ. Microgravity Science and Technology, 2021, 33(2): 25.

59 GRIEMSMANN T, PATZWALD J, CHAWDA C, et al. Influence of ambient pressure on laser beam melting of lunar regolith simulantJ. Acta Astronautica, 2024, 228: 30 -41.

60 HAN W B, DING L Y, ZHOU C, et al. Laser welding study of vacuum sintered HUST -1 lunar regolith simulantJ. Science China Technological Sciences, 2024, 67(9): 2905 -2918.

61 FARRIES K W, VISINTIN P, SMITH S T. A pilot study of laser -welding cast basalt blocks for lunar constructionJ. Case Studies in Construction Materials, 2023, 19: e02507.

62 LI X Y, WANG S J, CHENG A Y. A lunar surface effective solar irradiance real -time modelJ. Chinese Journal of Geophysics, 2008, 51(1): 25 -30.

63 欧阳自远.月球科学概论[M.北京:中国宇航出版社,2005.

OUYANG Ziyuan. Introduction to lunar scienceM. Beijing: China Astronautic Publishing House, 2005.

64 MERCHAN R P, SANTOS M J, MEDINA A, et al. High temperature central tower plants for concentrated solar power: 2021 overviewJ. Renewable and Sustainable Energy Reviews, 2022, 155: 111828.

65 WEINSTEIN L A, LOOMIS J, BHATIA B, et al. Concentrating solar powerJ. Chemical Reviews, 2015, 115(23): 12797 -12838.

66 GIBSON I, ROSEN D, STUCKER B. Additive manufacturing technologiesM. New York: Springer US, 2015.

67 BARMATZ M, STEINFELD D, BATRES J, et al. Microwave permittivity and permeability measurements on lunar simulants at low temperaturesJ. Advances in Space Research, 2023, 72(10): 4503 -4516.

68 张力心,李正伟,陈亮霄.敞开式微波加热固化模拟月壤试验研究[J.金属矿山,2024,7:75 -80.

ZHANG Lixin, LI Zhengwei, CHEN Liangxiao. Experimental study on the solidification of lunar soil simulant using an open -ended microwave heating deviceJ. Metal Mine, 2024, 7: 75 -80.

69 ALLAN S, BRAUNSTEIN J, BARANOVA I, et al. Computational modeling and experimental microwave processing of JSC -1A lunar simulantJ. Journal of Aerospace Engineering, 2013, 26(1): 143 -151.

70 CAPRIO L, DEMIR A G, PREVITALI B, et al. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusionJ. Additive Manufacturing, 2020, 32: 101029.

71 GOULAS A, BINNER J G P, ENGSTROM D S, et al. Mechanical behaviour of additively manufactured lunar regolith simulant componentsJ. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design and Applications, 2018, 233(8): 1629 -1644.

72 KOST P M, LINKE S, GUNDLACH B, et al. Thermal properties of lunar regolith simulant melting specimenJ. Acta Astronautica, 2021, 187:429 -437.

73 DANG F, WANG Z K, SUN W C, et al. Investigation of the melting behavior of laser -melted lunar regolith simulant for in -situ constructionJ. Journal of Materials Research and Technology, 2025, 36: 4574 -4584.

74 GUO D, LAMBERT -GARCIA R, HOCINE S, et al, Correlative spatter and vapour depression dynamics during laser powder bed fusion of an Al -Fe -Zr alloyJ. International Journal of Extreme Manufacturing, 2024, 6: 5.

75 IANTAFFI C, LEUNG C L A, RUCKH E, et al. Real -time synchrotron X -ray imaging of laser additive manufactured lunar regolith simulantJ. Acta Astronautica, 2025, 233: 218 -222.

76 LIAO H L, ZHU J J, CHANG S J, et al. Lunar regolith AlSi10Mg composite fabricated by selective laser meltingJ. Vacuum, 2021, 187: 110122.

77 LINKE S, VOA, ERNST M, et al. Two -dimensional laser melting of lunar regolith simulant using the MOONRISE payload on a mobile manipulatorJ. 3D Print Addit Manuf, 2022, 9(3): 223 -231.

78 LIU Y, ZHANG X, WANG C, et al. Forming and densification of lunar regolith simulant based on millimeter -scale energy beam meltingJ. Journal of Materials Research and Technology, 2024, 30: 2653 -2665.

79 ZHOU R Z, DAI G W, FAN S Q, et al. Thermal conductivity simulation and performance assessment of a novel structural lunar soil brick designJ. Case Studies in Construction Materials, 2025, 22: e04636.

80 ZHANG Y K, SHAW M, BROOKS G, et al. Investigation of heat transfer processes in multi -sized solar -sintered regolith for lunar ISRU programJ. International Journal of Heat and Mass Transfer, 2023, 214: 124387.

81 .月壤资源太阳光3D打印工程材料化利用研究[D.哈尔滨:哈尔滨工业大学,2020.

WANG Rui. Experimental and numerical study on lunar regolith solar 3D printing for engineering material utilizationD. Harbin: Harbin Institute of Technology, 2020.

82 HOWELL J T, FIKES J C, MCLEMORE C A, et al. On -site fabrication infrastructure to enable efficient exploration and utilization of spaceC//IAF. 59th International Astronautical Congress (IAC). Glasgow: Curran Associates, 2008: 7842 -7848.

Memo

Memo:
-
Last Update: 2026-01-20