[1]刘建忠 , 李雄耀 , 朱 凯,等.月球原位资源利用及关键科学与技术问题[J].中国科学基金,2022,36(6):907 -918. LIU Jianzhong, LI Xiongyao, ZHU Kai, et al. Key science and technology issues of lunar in situ resource utilization[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907 -918. [2] 欧阳自远.我国月球探测的总体科学目标与发展战略[J].地球科学进展,2004,19(3):351 -358. OUYANG Ziyuan. Scientific objectives of Chinese lunar exploration project and development strategy[J]. Advances in Earth Science, 2004, 19(3): 351 -358. [3] 邹永廖,欧阳自远,徐 琳,等.月球表面的环境特征[J].第四纪研究,2002,22(6):533 -539. ZOU Yongliao, OUYANG Ziyuan, XU Lin, et al. Lunar surface environmental characteristics[J]. Quaternary Sciences, 2002, 22(6): 533 -539. [4] 陈 磊,李 飞,任德鹏,等.月面和近月空间环境及其影响[J].航天器工程,2010,19(5):76 -81. CHEN Lei, LI Fei, REN Depeng, et al. Lunar surface and near lunar space environments and their effects[J]. Spacecraft Engineering, 2010, 19(5): 76 -81. [5] SANDERS G B, LARSON W E. Progress made in lunar in situ resource utilization under NASAs exploration technology and development program[J]. Journal of Aerospace Engineering, 2012, 26(1): 5 -17. [6] 贺新星,肖 龙,黄 俊,等.模拟月壤研究进展及CUG -1A模拟月壤[J].地质科技情报,2011,30(4):137 -142. HE Xinxing, XIAO Long, HUANG Jun, et al. Lunar soil simulant development and lunar soil simulant CUG -1A[J]. Bulletin of Geological Science and Technology, 2011, 30(4): 137 -142. [7] 张日晗,王统才,李 亮,等.面向月面原位制造/建造的月壤成型利用技术综述[J].宇航学报,2024,45(6):815 -830. ZHANG Rihan, WANG Tongcai, LI Liang, et al. In -situ manufacturing and utilization of lunar regolith for fabrication/construction on the lunar surface: a review[J]. Journal of Astronautics, 2024, 45(6): 815 -830. [8] FATERI M, COWLEY A, KOLBE M, et al. Localized microwave thermal posttreatment of sintered samples of lunar simulant[J]. Journal of Aerospace Engineering, 2019, 32(4): 04019051. [9] KIM Y J, RYU B H, JIN H, et al. Microstructural, mechanical, and thermal properties of microwave -sintered KLS -1 lunar regolith simulant[J]. Ceramics International, 2021, 47(19): 26891 -26897. [10] GHOLAMI S, ZHANG X, KIM Y J, et al. Hybrid microwave sintering of a lunar soil simulant: effects of processing parameters on microstructure characteristics and mechanical properties[J]. Materials & Design, 2022, 220: 110878. [11] MEURISSE A, MAKAYA A, WILLSCH C, et al. Solar 3D printing of lunar regolith[J]. Acta Astronautica, 2018, 152: 800 -810. [12] FATERI M, MEURISSE A, SPERL M, et al. Solar sintering for lunar additive manufacturing[J]. Journal of Aerospace Engineering, 2019, 32(6): 04019101. [13] LIM S, BOWEN J, DEGLI -ALESSANDRINI G, et al. Investigating the microwave heating behaviour of lunar soil simulant JSC -1A at different input powers[J]. Scientific Reports, 2021, 11: 2133. [14] 〖KG-*4〗LIM S, DEGLI -ALESSANDRINI G, BOWEN J, et al. The microstructure and mechanical properties of microwave -heated lunar simulants at different input powers under vacuum[J]. Scientific Reports, 2023, 13: 1804. [15] GATTO A, DEFANTI S, BASSOLI E, et al. Preliminary study on localized microwave sintering of lunar regolith[J]. Acta Astronautica, 2024, 218: 126 -136. [16] LIM S, ANAND M. Numerical modelling of the microwave heating behaviour of lunar regolith[J]. Planetary and Space Science, 2019, 179: 104723. [17] XU J, CAO H Z, SUN X Y, et al. 3D printing of hypothetical brick by selective laser sintering using lunar regolith simulant and ilmenite powders[C]//PU M B, LI X, MA X L, et al. 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Subdiffraction -limited Plasmonic Lithography and Innovative Manufacturing Technology. Bellingham: SPIE, 2018: 1084208. [18] BALLA V K, ROBERSON L B, OCONNOR G W, et al. First demonstration on direct laser fabrication of lunar regolith parts[J]. Rapid Prototyping Journal, 2012, 18(6): 451 -457. [19] FATERI M, GEBHARDT A. Process parameters development of selective laser melting of lunar regolith for on -site manufacturing applications[J]. International Journal of Applied Ceramic Technology, 2015, 12: 46 -52 [20] 郑永春,欧阳自远,王世杰,等. 月壤的物理和机械性质[J]. 矿物岩石,2004,24(4): 14 -19. ZHENG Yongchun, OUYANG Ziyuan, WANG Shijie, et al. Physical and mechanical properties of lunar regolith[J]. Mineralogy and Petrology, 2004, 24(4): 14 -19. [21] 胡家骏,俞可权,郭晓潞.基于“嫦娥五号”月壤的TJC -1模拟月壤研制[J].航天器环境工程,2024,41(4):389 -396. HU Jiajun, YU Kequan, GUO Xiaolu. Preparation of TJC -1 lunar regolith simulant based on ChangE -5 lunar soil[J]. Spacecraft Environment Engineering, 2024, 41(4): 389 -396. [22] 蒋明镜,李立青.TJ -1模拟月壤的研制[J].岩土工程学报,2011,33(2):209 -214. JIANG Mingjing, LI Liqing. Development of TJ -1 lunar soil simulant[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(2): 209 -214. [23] 周宁希,陈 健,黄珏皓,等.磁性高钛模拟月壤IRSM -1的研制及其性质研究[J].岩土工程学报,2023,45(增1):110 -113. ZHOU Ningxi, CHEN Jian, HUANG Juehao, et al. Development and properties of a magnetic high -titanium lunar regolith simulant IRSM -1[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 110 -113. [24] 孙晓燕,郑肖威,王海龙,等.面向原位建造技术的月壤模拟与制备[J].建筑材料学报,2025,28(1):72 -81. SUN Xiaoyan, ZHENG Xiaowei, WANG Hailong, et al. Lunar regolith simulants and preparation aimed at in -situ construction technology[J]. Journal of Building Materials, 2025, 28(1): 72 -81. [25] LI C, GUO Z, LI Y, et al. Impact -driven disproportionation origin of nanophase iron particles in ChangE -5 lunar soil sample[J]. Nature Astronomy, 2022, 6: 1156 -1162. [26] LACZZNIAK D L, THOMPSON M S, CHRISTOFFERSEN R, et al. Characterizing the spectral, microstructural, and chemical effects of solar wind irradiation on the Murchison carbonaceous chondrite through coordinated analyses[J]. Icarus, 2021, 364: 114479. [27] PALAMAKUMBURE L, MIZOHATA K, FLAND -EROV K, et al. Simulation of space weathering on asteroid spectra through hydrogen ion irradiation of meteorites[J]. The Planetary Science Journal, 2023, 4(4): 72. [28] LANTZ C, BRUNETTO R, BARUCCI M A, et al. Ion irradiation of the Murchison meteorite: visible to mid -infrared spectroscopic results[J]. Astronomy & Astrophysics, 2015, 577: A41. [29] WU Y X, LI X Y, YAO W Q, et al. Impact characteristics of different rocks in a pulsed laser irradiation experiment: simulation of micrometeorite bombardment on the moon[J]. Journal of Geophysical Research: Planets, 2017, 122(10): 1956 -1967. [30] LOEFFLER M J, DUKES C A, CHRISTOFFERSEN R, et al. Space weathering of silicates simulated by successive laser irradiation: in situ reflectance measurements of Fo90, Fo99+, and SiO2[J]. Meteoritics & Planetary Science, 〖JP2〗2016, 51(2): 261 -275. [31] TAYLOR L A, THOMAS T M. Microwave sintering of lunar soil: properties, theory, and practice[J]. 〖JP2〗Journal of Aerospace Engineering, 2005, 18(3): 188 -196. [32] 唐 红,王世杰,李雄耀,等.月壤钛铁矿微波烧结制备月球基地结构材料的初步设想[J].矿物学报,2009,29(2):229 -234. TANG Hong, WANG Shijie, LI Xiongyao, et al. A preliminary design for producing construction materials for the lunar base: microwave sintering ilmenite of lunar soil[J]. 〖JP2〗Acta Mineralogica Sinica, 2009, 29(2): 229 -234. [33] TANG H, WANG S J, LI X Y. Simulation of nanophase iron production in lunar space weathering[J]. Planetary and Space Science, 2010, 58(1): 322 -327. [34] ZHOU C J, TANG H, LI X Y, et al. Effects of ilmenite on the properties of microwave -sintered lunar regolith simulant[J]. Journal of Aerospace Engineering, 2021, 34(6): 06021006 -2. [35] MCKAY D S, CARTER J L, BOLES W W, et al. JSC -1: a new lunar soil simulant[J]. Engineering, Construction, and Operations in Space IV, 1994: 857 -866. [36] WEIBLEN P W, MURAWA M J, REID K J. Preparation of simulants for lunar surface materials[J]. Engineering, Construction, and Operations in Space, 1990: 98 -106. [37] LI C Y, XIE K Y, LIU A M, SHI Z N. The preparation and characterization of NEU -1 lunar soil simulants[J]. Energy Materials, 2019(71): 1471 -1476. [ 38 ] 郑永春,王世杰,冯俊明,等.CAS -1模拟月壤[J].矿物学报,2007,27(3/4):571 -578. ZHENG Yongchun, WANG Shijie, FENG Junming, et al. CAS -1 lunar soil simulant[J]. Acta Mineralogica Sinica, 2007, 27(3/4): 571 -578. [39] RASERA J N, CILLIERS J J, LAMAMY J A, et al. The beneficiation of lunar regolith for space resource utilisation: a review[J]. Planetary and Space Science, 2020, 186: 104879. [40] CARRIER W D. Particle size distribution of lunar soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(10): 956 -959. [41] SLYUTA E N. Physical and mechanical properties of the lunar soil (a review)[J]. Solar System Research, 2014, 48(5): 330 -353. [42] ZHANG H, ZHANG X, ZHANG G, et al. Size, morphology, and composition of lunar samples returned by ChangE -5 mission[J]. Science China Physics, Mechanics & Astronomy, 2021, 65(2): 229511. [43] LING Z, JOLLIFF B, WANG A, et al. Correlated compositional and mineralogical investigations at the Change -3 landing site[J]. Nature Communications, 2015, 6: 8880. [44] LIU B, SUN P, YAO W, et al. Research progress on the adaptability of lunar regolith simulant -based composites and lunar base construction methods[J]. International Journal of Mining Science and Technology, 2024, 34: 1341 -1363. [45] 樊世超,贾 阳,向树红,等.月面地形地貌环境模拟初步研究[J].航天器环境工程,2007,24(1):15 -20. FAN Shichao, JIA Yang, XIANG Shuhong, et al. A preliminary study on simulation of lunar surface terrain[J]. Spacecraft Environment Engineering, 2007, 24(1): 15 -20. [46] 杨 蔚,潘梓凌.月球“土特产”:从阿波罗11号到嫦娥5号[J].矿物岩石地球化学通报,2023,42(6):1424 -1438. YANG Wei, PAN Ziling. Lunar “native”: from Apollo 11 to Change 5[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(6): 1424 -1438. [47] LAUL J C, RODE O D, SIMON S B, et al. The lunar regolith: chemistry and petrology of Luna 24 grain size fractions[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 661 -673. [48] LI C, HU H, YANG M F, et al. Characteristics of the lunar samples returned by the ChangE -5 mission[J]. National Science Review, 〖JP2〗2022, 9(2): nwab188. [49] GROMOV V. Physical and mechanical properties of lunar and planetary soils[J]. Earth, Moon, and Planets, 1998, 80(1/2/3): 51 -72. [50] 林 枞,许业文,徐 政.陶瓷微波烧结技术研究进展[J].硅酸盐通报,2006,25(3):132 -135. LIN Cong, XU Yewen, XU Zheng. Development of microwave sintering technology in ceramic materials[J]. Bulletin of the Chinese Ceramic Society, 2006, 25(3): 132 -135. [51] WROE R, ROWLEY A T. Evidence for a non -thermal microwave effect in the sintering of partially stabilized zirconia[J]. Journal of Materials Science, 1996, 31(8): 2019 -2026. [52] 刘炳燕,尹洪峰,汤 云,等.高温透波材料在微波烧结领域的应用及研究进展[J].硅酸盐学报,2025,53(3):700 -717. LIU Bingyan, YIN Hongfeng, TANG Yun, et al. Progress on high -temperature wave -transmitting materials in microwave sintering[J]. Journal of the Chinese Ceramic Society, 2025, 53(3): 700 -717. [53] AMAN B, ACHARYA S, REEJA -JAYAN B. Making the case for scaling up microwave sintering of ceramics[J]. Advanced Engineering Materials, 2024, 26(9): 2302065. [54] HAYNE P O, BANDFIELD J L, SIEGLER M A, et al. Global regolith thermophysical properties of the moon from the diviner lunar radiometer experiment[J]. Journal of Geophysical Research: Planets, 2017, 122(12): 2371 -2400. [55] SAKATANI N, OGAWA K, ARAKAWA M, et al. Thermal conductivity of lunar regolith simulant JSC -1A under vacuum[J]. Icarus, 2018, 309: 13 -24. [56] HOWE S, WILCOX B, MCQUIN C, et al. Faxing structures to the moon: freeform additive construction system (FACS)[C]//AIAA. AIAA SPACE 2013 Conference and Exposition. Red Hook: Curran Associate, 2013: 1951 -1973. [57] HOWE S, WILCOX B, MARTIN B, et al. ATHLETE as a mobile ISRU and regolith construction platform[C]//MALLA R B, AGUI J H, VAN SUSANTE P J. Earth and Space 2016: Engineering for Extreme Environment. Virginia: American Society of Civil Engineers, 2016: 560 -575. [58] REITZ B, LOTZ C, GERDES N, et al. Additive manufacturing under lunar gravity and microgravity[J]. Microgravity Science and Technology, 2021, 33(2): 25. [59] GRIEMSMANN T, PATZWALD J, CHAWDA C, et al. Influence of ambient pressure on laser beam melting of lunar regolith simulant[J]. Acta Astronautica, 2024, 228: 30 -41. [60] HAN W B, DING L Y, ZHOU C, et al. Laser welding study of vacuum sintered HUST -1 lunar regolith simulant[J]. Science China Technological Sciences, 2024, 67(9): 2905 -2918. [61] FARRIES K W, VISINTIN P, SMITH S T. A pilot study of laser -welding cast basalt blocks for lunar construction[J]. Case Studies in Construction Materials, 2023, 19: e02507. [62] LI X Y, WANG S J, CHENG A Y. A lunar surface effective solar irradiance real -time model[J]. Chinese Journal of Geophysics, 2008, 51(1): 25 -30. [63] 欧阳自远.月球科学概论[M].北京:中国宇航出版社,2005. OUYANG Ziyuan. Introduction to lunar science[M]. Beijing: China Astronautic Publishing House, 2005. [64] MERCHAN R P, SANTOS M J, MEDINA A, et al. High temperature central tower plants for concentrated solar power: 2021 overview[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111828. [65] WEINSTEIN L A, LOOMIS J, BHATIA B, et al. Concentrating solar power[J]. Chemical Reviews, 2015, 115(23): 12797 -12838. [66] GIBSON I, ROSEN D, STUCKER B. Additive manufacturing technologies[M]. New York: Springer US, 2015. [67] BARMATZ M, STEINFELD D, BATRES J, et al. Microwave permittivity and permeability measurements on lunar simulants at low temperatures[J]. Advances in Space Research, 2023, 72(10): 4503 -4516. [68] 张力心,李正伟,陈亮霄.敞开式微波加热固化模拟月壤试验研究[J].金属矿山,2024,7:75 -80. ZHANG Lixin, LI Zhengwei, CHEN Liangxiao. Experimental study on the solidification of lunar soil simulant using an open -ended microwave heating device[J]. Metal Mine, 2024, 7: 75 -80. [69] ALLAN S, BRAUNSTEIN J, BARANOVA I, et al. Computational modeling and experimental microwave processing of JSC -1A lunar simulant[J]. Journal of Aerospace Engineering, 2013, 26(1): 143 -151. [70] CAPRIO L, DEMIR A G, PREVITALI B, et al. Determining the feasible conditions for processing lunar regolith simulant via laser powder bed fusion[J]. Additive Manufacturing, 2020, 32: 101029. [71] GOULAS A, BINNER J G P, ENGSTROM D S, et al. Mechanical behaviour of additively manufactured lunar regolith simulant components[J]. Proceedings of the Institution of Mechanical Engineers Part L: Journal of Materials: Design and Applications, 2018, 233(8): 1629 -1644. [72] KOST P M, LINKE S, GUNDLACH B, et al. Thermal properties of lunar regolith simulant melting specimen[J]. Acta Astronautica, 2021, 187:429 -437. [73] DANG F, WANG Z K, SUN W C, et al. Investigation of the melting behavior of laser -melted lunar regolith simulant for in -situ construction[J]. Journal of Materials Research and Technology, 2025, 36: 4574 -4584. [74] GUO D, LAMBERT -GARCIA R, HOCINE S, et al, Correlative spatter and vapour depression dynamics during laser powder bed fusion of an Al -Fe -Zr alloy[J]. International Journal of Extreme Manufacturing, 2024, 6: 5. [75] IANTAFFI C, LEUNG C L A, RUCKH E, et al. Real -time synchrotron X -ray imaging of laser additive manufactured lunar regolith simulant[J]. Acta Astronautica, 2025, 233: 218 -222. [76] LIAO H L, ZHU J J, CHANG S J, et al. Lunar regolith — AlSi10Mg composite fabricated by selective laser melting[J]. Vacuum, 2021, 187: 110122. [77] LINKE S, VO A, ERNST M, et al. Two -dimensional laser melting of lunar regolith simulant using the MOONRISE payload on a mobile manipulator[J]. 3D Print Addit Manuf, 2022, 9(3): 223 -231. [78] LIU Y, ZHANG X, WANG C, et al. Forming and densification of lunar regolith simulant based on millimeter -scale energy beam melting[J]. Journal of Materials Research and Technology, 2024, 30: 2653 -2665. [79] ZHOU R Z, DAI G W, FAN S Q, et al. Thermal conductivity simulation and performance assessment of a novel structural lunar soil brick design[J]. Case Studies in Construction Materials, 2025, 22: e04636. [80] ZHANG Y K, SHAW M, BROOKS G, et al. Investigation of heat transfer processes in multi -sized solar -sintered regolith for lunar ISRU program[J]. International Journal of Heat and Mass Transfer, 2023, 214: 124387. [81] 王 锐.月壤资源太阳光3D打印工程材料化利用研究[D].哈尔滨:哈尔滨工业大学,2020. WANG Rui. Experimental and numerical study on lunar regolith solar 3D printing for engineering material utilization[D]. Harbin: Harbin Institute of Technology, 2020.