|Table of Contents|

Bending performance test and bending stiffness calculation of lightweight-composite slabs with different construction form(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2026年01期
Page:
183-194
Research Field:
建筑结构
Publishing date:

Info

Title:
Bending performance test and bending stiffness calculation of lightweight-composite slabs with different construction form
Author(s):
QUAN Wenli1 HUANG Wei1 MIAO Xinwei23 AN Yongjiannan1 FENG Yuan1
(1. College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China;
2. School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, Shaanxi, China;?
3. Postdoctoral Research Station of Materials Science and Engineering, Xi’an University of? Architecture and Technology, Xi’an 710055, Shaanxi, China)
Keywords:
lightweight composite slab bending stiffness sand aerated concrete truss steel bar fiber high ductility concrete
PACS:
TU375.2
DOI:
10.19815/j.jace.2024.10075
Abstract:
In response to the demand for lightweight development of prefabricated concrete components, a type of lightweight composite slab was proposed by combining ordinary concrete composite slabs with sand aerated concrete materials. In order to study the bending performance of this type of lightweight composite slab and establish its bending stiffness calculation formula, four point bending tests were conducted to analyze the effects of prefabricated bottom plate material, truss steel bar configuration, and high ductility concrete lining on the failure mode, flexural bearing capacity, bending stiffness, and other bending properties of the composite slab. Based on the experimental results, a formula for calculating the shortterm bending stiffness of this type of lightweight composite slab under different stress stages was proposed. The results show that the truss steel bar effectively improves the shear resistance and ultimate bending capacity of the composite surface of lightweight composite slab. When 0.4% carbon fiber and 0.4% basalt fiber are added to the prefabricated bottom plate without setting high ductility concrete lining, the bending stiffness and bearing capacity of the composite slab are improved to varying degrees, but the carbon fiber reinforcement effect is more significant. When setting high ductility concrete lining for prefabricated bottom plates, there is little difference in the influence of carbon fiber and basalt fiber on the bending stiffness and bearing capacity of composite slab. The order of influence on the bending performance of the lightweight composite slab from large to small is truss steel bar, fiber, and lining plate construction. The calculation results of the established shortterm bending stiffness formula is in good agreement with the experimental results.

References:

1]黄炜,罗斌,李斌,.不同构造形式绿色混凝土叠合板受弯性能试验[J].湖南大学学报(自然科学版),2019,46(7):35-44.

HUANG Wei, LUO Bin, LI Bin, et al.Experiment on flexural behavior of green concrete composite slab with differentstructural forms[J]. Journal of Hunan University (Natural Sciences), 2019,46(7): 35-44.

2]赵娟,焦丽明.装配式建筑产业发展现状及对策[J].建筑科学,2024,40(6):116-122.

ZHAO Juan, JIAO Liming. Current situationand countermeasures of prefabricated building industry[J]. Building Science,2024, 40(6): 116-122.

3]罗斌. 不同构造形式预制底板叠合板受弯性能试验与设计方法研究[D].西安:西安建筑科技大学,2019.

LUO Bin. Research on designing theory andexperimental among flexural performance of precast concrete composite slabswith different shapes[D]. Xi’an: Xi’an University of Architecture andTechnology, 2019.

4]聂建国,姜越鑫,聂鑫,.叠合板中桁架钢筋对预制板受力性能的影响[J].建筑结构学报,2021,42(1):151-158.

NIE Jianguo, JIANG Yuexin, NIE Xin, et al.Effect of truss reinforcement on mechanical properties of prefabricated slabs[J].Journal of Building Structures, 2021, 42(1): 151-158.

5]谷倩,雷晓天,黄超,.页岩陶粒轻质混凝土双向叠合楼板受力性能试验及挠度计算分析[J].建筑科学与工程学报,2018,35(6):102-110.

GU Qian, LEI Xiaotian, HUANG Chao, et al.Mechanical performance test and deflection calculation analysis of shaleceramsite lightweight concrete two-way composite floor slab[J]. Journal ofArchitecture and Civil Engineering, 2018, 35(6): 102-110.

6]周梅,张院强,杨尚谕,.自燃煤矸石砂轻混凝土单向叠合板的受弯性能[J].建筑材料学报,2021,24(5):1066-1072.

ZHOU Mei, ZHANG Yuanqiang, YANG Shangyu, etal. Flexural behavior of unidirectional laminated plate of spontaneouscombustion gangue sand light concrete[J]. Journal of Building Materials, 2021, 24(5):1066-1072.

7HAN C X, HE H L,LUO Q J, et al. Experimental and theoretical study on static performance ofprefabricated steel-bar truss frame-precast concrete composite hollow-coreslabs[J]. Structures, 2024, 61: 105971.

8]武立伟,陈海彬,刘亦斌.混凝土预制叠合空心楼板静力性能试验研究[J].建筑结构学报,2018,39(2):36-42.

WU Liwei, CHEN Haibin, LIU Yibin.Experimental study on static performance of precast concrete composite hollowfloors[J]. Journal of Building Structures, 2018, 39(S2): 36-42.

9]侯和涛,冯明远,邱灿星,.预应力混凝土钢肋叠合板受弯性能试验与理论研究[J].建筑结构学报,2018,39(3):103-110.

HOU Hetao, FENG Mingyuan, QIU Canxing, etal. Experimental and theoretical study on flexural behavior of prestressedconcrete composite slab with steel rib[J]. Journal of Building Structures,2018, 39(3): 103-110.

10]赵广军,赵雷,李文杰,.预应力混凝土带肋叠合板受弯性能试验与设计关键问题研究[J].建筑结构学报,2023,44(9):171-182.

ZHAO Guangjun, ZHAO Lei, LI Wenjie, et al.Experimental and design key problems study on bending behavior of prestressedconcrete composite slab with concrete rib[J]. Journal of Building Structures,2023, 44(9): 171-182.

11]吴方伯,刘彪,邓利斌,.预应力混凝土叠合空心楼板静力性能试验研究[J].建筑结构学报,2014,35(12):10-19.

WU Fangbo, LIU Biao, DENG Libin, et al.Experimental study on static behavior of prestressed concrete composite hollowfloors[J]. Journal of Building Structures, 2014, 35(12): 10-19.

12]罗斌.构造形式对复合叠合板弯曲刚度的影响[J].湖南大学学报(自然科学版),2023,50(1):36-44.

LUO Bin. Influence of constructionalpattern on bending stiffness of composite slab[J]. Journal of Hunan University(Natural Sciences), 2023, 50(1): 36-44.

13]冯鑫,陈明,田志昌.混凝土叠合板分类及研究综述[J].建筑结构,2024,54(1):138-144.

FENG Xin, CHEN Ming, TIAN Zhichang. Summaryof classification and research on concrete composite slab[J]. BuildingStructure, 2024, 54(1): 138-144.

14QUAN W L, HUANGW, LI Z J, et al. A new approach for improving the properties of tailings sandautoclaved aerated concrete-from a mineralogical perspective[J]. Constructionand Building Materials,2024, 441: 137584.

15]张宇峰,吕志涛.ALC板做底板的迭合楼板的性能研究[J].工业建筑,2000,30(10):49-51.

ZHANG Yufeng, LYUZhitao. The property study of composite slab which used ALC slab as it’s base-slab[J].Industrial Construction, 2000, 30(10): 49-51.

16YARDIM Y,WALEED A M T, JAAFAR M S, et al. AAC-concrete light weight precast compositefloor slab[J]. Construction and Building Materials, 2013, 40: 405-410.

17]徐春一,成良浩,阎磊.以蒸压加气混凝土为底板的叠合楼板承载试验与研究[J].沈阳建筑大学学报(自然科学版),2022,38(2):272-278.

XU Chunyi, CHENG Lianghao, YAN Lei. Load-bearingtests and research on laminated floor slabs with autoclaved aerated concrete asthe base slab[J]. Journal of Shenyang Jianzhu University (Natural Science),2022, 38(2): 272-278.

18]蒸压加气混凝土性能试验方法:GB/T119692020[S].北京:中国标准出版社,2020.

Test methods of autoclaved aeratedconcrete: GB/T 119692020[S]. Beijing: Standards Pressof China, 2020.

19]混凝土物理力学性能试验方法标准:GB/T500812019[S].北京:中国建筑工业出版社,2019.

Standard for test methods of concretephysical and mechanical properties: GB/T 500812019[S].Beijing: China Architecture & Building Press, 2019.

20]混凝土结构试验方法标准:GB/T501522012[S].北京:中国建筑工业出版社,2012.

Standard for test method of concretestructures: GB/T 501522012[S]. Beijing: ChinaArchitecture & Building Press, 2012.

21]权文立,黄炜,毛文桢,.循环荷载作用下纤维增强蒸压加气混凝土力学性能试验[J].复合材料学报,2025,42(2):1049-1060.

QUAN Wenli, HUANG Wei, MAO Wenzhen, et al.Experimental research on the mechanical properties of fiber-reinforcedautoclaved aerated concrete under cyclic loading[J]. Acta Materiae CompositaeSinica, 2025, 42(2): 1049-1060.

22LAUKAITIS A,KERIENE J, MIKULSKIS D, et al. Influence of fibrous additives on properties of aeratedautoclaved concrete forming mixtures and strength characteristics of products[J].Construction and Building Materials, 2009, 23(9): 3034-3042.

23]冯鹏,强翰霖,叶列平.材料、构件、结构的“屈服点” 定义与讨论[J].工程力学,2017,34(3):36-46.

FENG Peng, QIANG Hanlin, YE Lieping.Discussion and definition on yield points of materials, members and structures[J].Engineering Mechanics, 2017, 34(3): 36-46.

24FENG P, CHENGS, BAI Y, et al. Mechanical behavior of concrete-filled square steel tube withFRP-confined concrete core subjected to axial compression[J]. CompositeStructures, 2015, 123: 312-324.

25]刘运林.双向叠合楼板拼缝处受力机理试验研究与数值模拟[D].合肥:合肥工业大学,2014.

LIU Yunlin. Experimental research andnumerical analysis on stress mechanism in the joint of two-way superimposedslab[D]. Hefei: Hefei University of Technology, 2014.

26Building coderequirements for structural concrete and commentary: ACI 318M-05[S]. FarmingtonHills: ACI, 1995.

27]蒸压加气混凝土制品应用技术标准:JGJ/T172020[S].北京:中国建筑工业出版社,2020.

Technical standard for application ofautoclaved aerated concrete product: JGJ/T 172020[S].Beijing: China Architecture & Building Press, 2020.

Memo

Memo:
-
Last Update: 2026-01-20