|Table of Contents|

Steel tube coal gangue concrete axial pressure short column ultimate bearing capacity calculation method research(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2023年03期
Page:
50-60
Research Field:
建筑结构
Publishing date:

Info

Title:
Steel tube coal gangue concrete axial pressure short column ultimate bearing capacity calculation method research
Author(s):
ZHANG Yuzhuo12 LIU Jinlong3 XU Qian2 WANG Qinghe4
(1. School of Management, Shenyang Jianzhu University, Shenyang 110168, Liaoning, China; 2. Liaoning Key Laboratory of Coal Gangue Resource Utilization and Energy-saving Building Materials, Liaoning Technical University, Fuxin 123000, Liaoning, China; 3. School of Civil Engineering, Southeast University, Nanjing 211189, Jiangsu, China; 4. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China)
Keywords:
steel tube concrete column coal gangue concrete axial compression ultimate bearing capacity calculation method
PACS:
TU398.1
DOI:
10.19815/j.jace.2021.11148
Abstract:
In order to promote coal gangue application in concrete-filled steel tubular(CFST)structures, coal gangue produced in Liaoning province was selected as coarse aggregate, then the axial compression tests on 6 CFST short columns and 12 CFST short columns using spontaneous-combustion coal gangue aggregate(SCGA)were carried out. Based on the failure mode and load-strain curve of the component, the influences of material strength, steel tube confinement and replacement rate of SCGA on the axial compression bearing capacity of the component were discussed. The correlation analysis between design parameters and axial compression capacity was carried out. On this basis, the applicability of the ultimate bearing capacity calculation method of axial compression short column in GB 50936—2014 and T/CECS 625—2019 to coal gangue CFST was discussed, and the recommended correction coefficient of the calculation formula of ultimate bearing capacity of circular coal gangue CFST short column was given. The results show that the components under axial compression test show local buckling and shear failure modes. Compared with ordinary CFST short column, steel tube has better lateral restraint effect on core coal gangue concrete. Under the same replacement rate, increasing the confinement coefficient and steel ratio will significantly increase the bearing capacity of the component. The axial compression bearing capacity of the component decreases with the increase of the coal gangue replacement rate, but the maximum reduction does not exceed 11%. The correlation coefficient of coal gangue coarse aggregate to bearing capacity is -0.33 which is not significant, The relevant calculation methods in the existing specifications GB 50936—2014 and T/CECS 625—2019 are applicable to the short column of coal gangue CFST. The average error of bearing capacity calculation is less than 3%.

References:

[1] 韩林海.钢管混凝土结构——理论与实践[M].3版.北京:科学出版社,2016.
HAN Linhai.Concrete filled steel tubular structures —theory and practice[M].3rd ed.Beijing:Science Press,2016.
[2]王栋民,房奎圳.煤矸石资源化利用技术[M].北京:中国建材工业出版社,2021.
WANG Dongmin,FANG Kuizheng.Coal gangue resource utilization technology[M].Beijing:China Building Materials Press,2021.
[3]ZHOU M,DOU Y W,ZHANG Y Z,et al.Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J].Construction and Building Materials,2019,220:386-395.
[4]ZHANG Y Z,WANG Q H,ZHOU M,et al.Mechanical properties of concrete with coarse spontaneous combustion gangue aggregate(SCGA):experimental investigation and prediction methodology[J].Construction and Building Materials,2020,255:119337.
[5]白国良,朱 超,王建文,等.煤矸石混凝土梁受剪性能试验研究[J].建筑结构学报,2020,41(12):49-55.
BAI Guoliang,ZHU Chao,WANG Jianwen,et al.Experimental study on shear behavior of coal gangue concrete beams[J].Journal of Building Structures,2020,41(12):49-55.
[6]李帼昌,张海霞,杨志坚.钢管煤矸石混凝土结构的抗震性能[M].北京:科学出版社,2018.
LI Guochang,ZHANG Haixia,YANG Zhijian.Seismic performance of concrete-filled steel tube with coal gangue[M].Beijing:Science Press,2018.
[7]牛海成,曹万林,董宏英,等.钢管高强再生混凝土柱轴压性能试验研究[J].建筑结构学报,2015,36(6):128-136.
NIU Haicheng,CAO Wanlin,DONG Hongying,et al.Experimental research on highstrength recycled concrete-filled steel tube columns subjected to axial compression[J].Journal of Building Structures,2015,36(6):128-136.
[8]吴 波,刘 伟,刘琼祥,等.钢管再生混合短柱的轴压性能试验[J].土木工程学报,2010,43(2):32-38.
WU Bo,LIU Wei,LIU Qiongxiang,et al.Experimental study on the behavior of recycled-concrete-segment/lump filled steel tubular stub columns subjected to concentrically axial load[J].China Civil Engineering Journal,2010,43(2):32-38.
[9]陈宗平,郑述芳,李启良,等.方钢管再生混凝土长柱偏心受压承载性能试验研究[J].建筑结构学报,2012,33(9):21-29.
CHEN Zongping,ZHENG Shufang,LI Qiliang,et al.Experimental study on behavior of recycled aggregate concrete filled square steel tubular long columns under eccentric compression loading[J].Journal of Building Structures,2012,33(9):21-29.
[10]王玉银,陈 杰,纵 斌,等.钢管再生混凝土与钢筋再生混凝土轴压短柱力学性能对比试验研究[J].建筑结构学报,2011,32(12):170-177.
WANG Yuyin,CHEN Jie,ZONG Bin,et al.Mechanical behavior of axially loaded recycled aggregate concrete filled steel tubular stubs and reinforced recycled aggregate concrete stubs[J].Journal of Building Structures,2011,32(12):170-177.
[11]陈梦成,方 苇,黄 宏,等.锈蚀圆钢管再生混凝土轴压短柱受力性能研究[J].建筑结构学报,2019,40(12):138-146.
CHEN Mengcheng,FANG Wei,HUANG Hong,et al.Axial compressive behavior of recycled concrete filled corroded circular steel tubular columns[J].Journal of Building Structures,2019,40(12):138-146.
[12]张向冈,陈宗平,薛建阳,等.钢管再生混凝土轴压长柱试验研究及力学性能分析[J].建筑结构学报,2012,33(9):12-20.
ZHANG Xianggang,CHEN Zongping,XUE Jianyang,et al.Experimental study and mechanical behavior analysis of recycled aggregate concrete filled steel tubular long columns under axial compression[J].Journal of Building Structures,2012,33(9):12-20.
[13]黄 宏,孙 微,陈梦成,等.方钢管再生混凝土轴压短柱力学性能试验研究[J].建筑结构学报,2015,36(增1):215-221.
HUANG Hong,SUN Wei,CHEN Mengcheng,et al.Experimental research on mechanical behavior of recycled concrete-filled square steel tubular stub columns subjected to axial compression[J].Journal of Building Structures,2015,36(S1):215-221.
[14]李 兵,张 齐,孟 爽.方钢管再生混凝土短柱轴压承载力有限元分析[J].建筑科学与工程学报,2014,31(4):29-34.
LI Bing,ZHANG Qi,MENG Shuang.Finite element analysis of bearing capacity for recycled concrete-filled square steel tubular stub columns under axial compression[J].Journal of Architecture and Civil Engineering,2014,31(4):29-34.
[15]张玉琢,吕学涛,李晓婷.中空夹层方钢管再生混凝土柱火灾后剩余承载力[J].建筑科学与工程学报,2019,36(1)76-84.
ZHANG Yuzhuo,LU Xuetao,LI Xiaoting.Residual bearing capacity of hollow sandwich square steel tube recycled concrete column after fire[J].Journal of Architecture and Civil Engineering,2019,36(1)76-84.
[16]马 辉,郭婷婷,李 哲,等.圆钢管型钢再生混凝土组合柱轴压性能及承载力计算[J].建筑结构学报,2018,39(2):97-105.
MA Hui,GUO Ting-ting,LI Zhe,et al.Axial compression performance and bearing capacity calculation of recycled concrete filled circular steel tube-profile steel composite columns[J].Journal of Building Structures,2018,39(2):97-105.
[17]刘 坚,田 勇,刘长江,等.圆钢管钢筋再生混凝土短柱轴压承载力[J].建筑科学与工程学报,2020,37(5):97-105.
LIU Jian,TIAN Yong,LIU Changjiang,et al.Axial compression carrying capacity of reinforced recycled aggregate concrete-filled circular steel tubular stub columns[J].Journal of Architecture and Civil Engineering,2020,37(5):97-105.
[18]沈奇罕,高奔浩,王静峰,等.椭圆截面钢管钢渣混凝土短柱轴压性能试验研究[J].建筑结构学报,2021,42(增2):197-203.
SHEN Qihan,GAO Benhao,WANG Jingfeng,et al.Experimental study on performance of steel slag concrete filled elliptical steel tubular stub columns under axial load[J].Journal of Building Structures,2021,42(S2):197-203.
[19]GAO S,ZHAO G H,GUO L H,et al.Utilization of coal gangue as coarse aggregates in structural concrete[J].Construction and Building Materials,2021,268:121212.
[20]钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014.
Technical code for concrete filled steel tubular structures:GB 50936—2014[S].Beijing:China Architecture & Building Press,2014.
[21]钢管再生混凝土结构技术规程:T/CECS 625—2019[S].北京:中国建筑工业出版社,2019.
Technical specification for recycled aggregate concrete-filled steel tubular structures:T/CECS 625—2019[S].Beijing:China Architecture & Building Press,2019.
[22]金属材料拉伸试验 第1部分:室温试验方法:GB/T 228.1—2010[S].北京:中国标准出版社,2010.
Metallic materials — tensile tasting — part 1:method of test at room temperature:GB/T 228.1—2010[S].Beijing:Standards Press of China,2010.

Memo

Memo:
-
Last Update: 2023-05-20