[1] LABONNOTE N,RONNQUIST A,MANUM B,et al.Additive Construction:State-of-the-art,Challenges and Opportunities[J].Automation in Construction,2016,72:347-366.
[2]DAMME V H.Concrete Material Science:Past,Present,and Future Innovations[J].Cement and Concrete Research,2018,112:5-24.
[3]WANGLER T,LLORET E,REITER L,et al.Digital Concrete:Opportunities and Challenges[J].RILEM Technical Letters,2016,1:67-75.
[4]WANGLER T,ROUSSEL N,BOS F P,et al.Digital Concrete:A Review[J].Cement and Concrete Research,2019,123:105780.
[5]ASTM F2792-12a,Standard Terminology for Additive Manufacturing Technologies[S].
[6]WU P,WANG J,WANG X Y.A Critical Review of the Use of 3-D Printing in the Construction Industry[J].Automation in Construction,2016,68:21-31.
[7]MELCHELS F P W,DOMINGOS M A N,KLEIN T J,et al.Additive Manufacturing of Tissues and Organs[J].Progress in Polymer Science,2012,37(8):1079-1104.
[8]SCHUTTER G D,LESAGE K,MECHTCHERINE V,et al.Vision of 3D Printing with Concrete — Technical,Economic and Environmental Potentials[J].Cement and Concrete Research,2018,112:25-36.
[9]Anon.A Third Industrial Revolution[J].The Economist,2012,403(8781):1-5.
[10]SANJAYAN J G,NAZARI A,NEMATOLLAHI B.3D Concrete Printing Technology[M].Amsterdam:Elsevier,2019.
[11]MELIA J L,MEARNS K,SILVA S A,et al.Safety Climate Responses and the Perceived Risk of Accidents in the Construction Industry[J].Safety Science,2008,46(6):949-958.
[12]WENG Y W,LI M Y,TAN M J,et al.Design 3D Printing Cementitious Materials via Fuller Thompson Theory and Marson-Percy Model[J].Construction and Building Materials,2018,163:600-610.
[13]YAHIA A.Shear-thickening Behavior of High-performance Cement Grouts — Influencing Mix-design Parameters[J].Cement and Concrete Research,2011,41(3):230-235.
[14]BENTZ D P,FERRARIS C F,GALLER M A,et al.Influence of Particle Size Distributions on Yield Stress and Viscosity of Cement-fly Ash Pastes[J].Cement and Concrete Research,2012,42(2):404-409.
[15]LE T T,AUSTIN S A,LIM S,et al.Mix Design and Fresh Properties for High-performance Printing Concrete[J].Materials and Structures,2012,45(8):1221-1232.
[16]LEDIGA R,KRUGER D.Optimizing Concrete Mix Design for Application in 3D Printing Technology for the Construction Industry[J].Solid State Phenomena,2017,263:24-29.
[17]RAHUL A V,SANTHANAM M,MEENA H,et al.3D Printable Concrete:Mixture Design and Test Methods[J].Cement and Concrete Composites,2019,97:13-23.
[18]MALAEB Z,HACHEM H,TOURBAH A,et al.3D Concrete Printing Machine and Mix Design[J].International Journal of Civil Engineering,2015,6(6):14-22.
[19]LIU Z X,LI M Y,WENG Y W,et al.Mixture Design Approach to Optimize the Rheological Properties of the Material Used in 3D Cementitious Material Printing[J].Construction and Building Materials,2018,198:245-255.
[20]KHELIFI H,PERROT A,LECOMPTE T,et al.Design of Clay/Cement Mixtures for Extruded Building Products[J].Materials and Structures,2013,46(6):999-1010.
[21]PERROT A,RANGEARD D,PIERRE A.Structural Built-up of Cement-based Materials Used for 3D-printing Extrusion Techniques[J].Materials and Structures,2015,49(4):1-8.
[22]PANDA B,UNLUER C,TAN M J.Extrusion and Rheology Characterization of Geopolymer Nanocomposites Used in 3D Printing[J].Composites Part B:Engineering,2019,176:107290.
[23]NERELLA V N,NATHER M,IQBAL A,et al.Inline Quantification of Extrudability of Cementitious Materials for Digital Construction[J].Cement and Concrete Composites,2019,95:260-270.
[24]MA G W,LI Z J,WANG L.Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing[J].Construction and Building Materials,2018,162:613-627.
[25]ZHANG Y,ZHANG Y S,SHE W,et al.Rheological and Harden Properties of the High-thixotropy 3D Printing Concrete[J].Construction and Building Materials,2019,201:278-285.
[26]MOSTAFA A M,YAHIA A.New Approach to Assess Build-up of Cement-based Suspensions[J].Cement and Concrete Research,2016,85:174-182.
[27]REITER L,WANGLER T,ROUSSEL N,et al.The Role of Early Age Structural Build-up in Digital Fabrication with Concrete[J].Cement and Concrete Research,2018,112:86-95.
[28]ZHANG C,HOU Z Y,CHEN C,et al.Design of 3D Printable Concrete Based on the Relationship Between Flowability of Cement Paste and Optimum Aggregate Content[J].Cement and Concrete Composites,2019,104:103406.
[29]NGUYEN V H,REMOND S,GALLIAS J L.Influence of Cement Grouts Composition on the Rheological Behaviour[J].Cement and Concrete Research,2011,41(3):292-300.
[30]ROUSSEL N.Rheological Requirements for Printable Concretes[J].Cement and Concrete Research,2018,112:76-85.
[31]KRUGER J,ZERANKA S,ZIJL G V.An ab Initio Approach for Thixotropy Characterisation of(Nanoparticle-infused)3D Printable Concrete[J].Construction and Building Materials,2019,224:372-386.
[32]ROUSSEL N,OVARLEZ G,GARRAULT S,et al.The Origins of Thixotropy of Fresh Cement Pastes[J].Cement and Concrete Research,2012,42(1):148-157.
[33]ZHANG D W,WANG D M,LIN X Q,et al.The Study of the Structure Rebuilding and Yield Stress of 3D Printing Geopolymer Pastes[J].Construction and Building Materials,2018,184:575-580.
[34]ALCHAAR A S,AL-TAMIMI A K.Mechanical Properties of 3D Printed Concrete in Hot Temperatures[J].Construction and Building Materials,2021,266:120991.
[35]AL-QUTAIFI S,NAZARI A,BAGHERI A.Mechanical Properties of Layered Geopolymer Structures Applicable in Concrete 3D-printing[J].Construction and Building Materials,2018,176:690-699.
[36]FENG P,MENG X,CHEN J F,et al.Mechanical Properties of Structures 3D Printed with Cementitious Powders[J].Construction and Building Materials,2015,93:486-497.
[37]LE T T,AUSTIN S A,LIM S,et al.Hardened Properties of High-performance Printing Concrete[J].Cement and Concrete Research,2012,42(3):558-566.
[38]WOLFS R J M,BOS F P,SALET T A M.Early Age Mechanical Behaviour of 3D Printed Concrete:Numerical Modelling and Experimental Testing[J].Cement and Concrete Research,2018,106:103-116.
[39]PANDA B,LIM J H,TAN M J.Mechanical Properties and Deformation Behaviour of Early Age Concrete in the Context of Digital Construction[J].Composites Part B:Engineering,2019,165(15):563-571.
[40]XIAO J Z,ZOU S,YU Y,et al.3D Recycled Mortar Printing:System Development,Process Design,Material Properties and On-site Printing[J].Journal of Building Engineering,2020,32:101779.
[41]DING T,XIAO J Z,ZOU S,et al.Hardened Properties of Layered 3D Printed Concrete with Recycled Sand[J].Cement and Concrete Composites,2020,113:103724.
[42]XIAO J Z,LIU H R,DING T.Finite Element Analysis on the Anisotropic Behavior of 3D Printed Concrete Under Compression and Flexure[J].Additive Manufacturing,2021,39:101712.
[43]孙晓燕,乐凯笛,王海龙,等.挤出形状/尺寸对3D打印混凝土力学性能的影响[J].建筑材料学报,2020,23(6):1313-1320.
SUN Xiao-yan,LE Kai-di,WANG Hai-long,et al.Influence of Extruded Strip Shape and Dimension on the Mechanical Properties of 3D Printed Concrete[J].Journal of Building Materials,2020,23(6):1313-1320.
[44]RAHUL A V,M.SANTHANAM,MEENA H,et al.Mechanical Characterization of 3D Printable Concrete[J].Construction and Building Materials,2019,227:116710.
[45]HOU S D,DUAN Z H,XIAO J Z,et al.A Review of 3D Printed Concrete:Performance Requirements,Testing Measurements and Mix Design[J].Construction and Building Materials,2020,273:121745.
[46]侯泽宇,张 宇,张 超,等.3D打印混凝土力学性能试验方法[J].混凝土与水泥制品,2019(11):1-5.
HOU Ze-yu,ZHANG Yu,ZHANG Chao,et al.Test Method for Mechanical Properties of 3D Printed Concrete[J].China Concrete and Cement Products,2019(11):1-5.
[47]MA G W,WANG L.A Critical Review of Preparation Design and Workability Measurement of Concrete Material for Largescale 3D Printing[J].Frontiers of Structural and Civil Engineering,2018,12(3):382-400.
[48]LU B,WENG Y,LI M,et al.A Systematical Review of 3D Printable Cementitious Materials[J].Construction and Building Materials,2019,207:477-490.
[49]KHOSHNEVIS B.Automated Construction by Contour Crafting ― Related Robotics and Information Technologies[J].Automation in Construction,2004,13(1):5-19.
[50]ZHANG J C,WANG J,DONG S,et al.A Review of the Current Progress and Application of 3D Printed Concrete[J].Composites Part A:Applied Science and Manufacturing,2019,125:105533.
[51]SOUZA M T,FERREIRA I M,DE MORAES E G,et al.3D Printed Concrete for Large-scale Buildings:An Overview of Rheology,Printing Parameters,Chemical Admixtures,Reinforcements,and Economic and Environmental Prospects[J].Journal of Building Engineering,2020,32:101833.
[52]KHALIL N,AOUAD G,CHEIKH K E,et al.Use of Calcium Sulfoaluminate Cements for Setting Control of 3D-printing Mortars[J].Construction and Building Materials,2017,157:382-391.
[53]PERROT A,RANGEARD D,PIERRE A.Structural Built-up of Cement-based Materials Used for 3D-printing Extrusion Techniques[J].Materials and Structures,2015,49(4):1-8.
[54]PANDA B,TAN M J.Rheological Behavior of High Volume Fly Ash Mixtures Containing Micro Silica for Digital Construction Application[J].Materials Letters,2018,237:348-351.
[55]CHEN M,LI L,ZHENG Y,et al.Rheological and Mechanical Properties of Admixtures Modified 3D Printing Sulphoaluminate Cementitious Materials[J].Construction and Building Materials,2018,189:601-611.
[56]PERROT A,MELINGE Y,RANGEARD D,et al.Extrusion Criterion for Firm Cement-based Materials[J].Applied Rheology,2009,19(5):53042-53048.
[57]霍 亮,蔺喜强,李小龙,等.基于沙漠砂的3D打印砂浆性能研究及应用[J].混凝土,2020(12):108-110,117.
HUO Liang,LIN Xi-qiang,LI Xiao-long,et al.Research and Application of Performance Based on Desert Sand 3D Printed Mortar [J].Concrete,2020(12):108-110,117.
[58]王海龙,汪 群,孙晓燕,等.基于工作性能的3D打印PVA纤维混凝土配合比优化设计[J].混凝土,2020(11):93-95.
WANG Hai-long,WANG Qun,SUN Xiao-yan,et al.Optimization Design of 3D Printing PVA Fiber Concrete Mix Ratio Based on Work Performance [J].Concrete,2020(11):93-95.
[59]MALAEB Z,HACHEM H,TOURBAH A,et al.3D Concrete Printing:Machine and Mix Design[J].International Journal of Civil Engineering and Technology,2015,6(6):14-22.
[60]FIGUEIREDO S C,COPUROGLU O,SCHLANGEN E.Effect of Viscosity Modifier Admixture on Portland Cement Paste Hydration and Microstructure[J].Construction and Building Materials,2019,212:818-840.
[61]MA S,QIAN Y,KAWASHIMA S.Experimental and Modeling Study on the Non-linear Structural Build-up of Fresh Cement Pastes Incorporating Viscosity Modifying Admixtures[J].Cement and Concrete Research,2018,108:1-9.
[62]LONG W J,TAO J L,LIN C,et al.Rheology and Buildability of Sustainable Cement-based Composites Containing Micro-crystalline Cellulose for 3D-printing[J].Journal of Cleaner Production,2019,239:118054.
[63]MA G W,LI Z J,WANG L,et al.Mechanical Anisotropy of Aligned Fiber Reinforced Composite for Extrusion-based 3D Printing[J].Construction and Building Materials,2019,202:770-783.
[64]ZHANG Y,ZHANG Y,LIU G,et al.Fresh Properties of a Novel 3D Printing Concrete Ink[J].Construction and Building Materials,2018,174:263-271.
[65]PANDA B,PAUL S C,MING J T.Anisotropic Mechanical Performance of 3D Printed Fiber Reinforced Sustainable Construction Material[J].Materials Letters,2017,209:146-149.
[66]HAMBACH M,VOLKMER D.Properties of 3D-printed Fiber-reinforced Portland Cement Paste[J].Cement and Concrete Composites,2017,79:62-70.
[67]KAZEMIAN A,XIAO Y,COCHRAN E,et al.Cementitious Materials for Construction-scale 3D Printing:Laboratory Testing of Fresh Printing Mixture[J].Construction and Building Materials,2017,145:639-647.
[68]SOLTAN D G,LI V C.A Self-reinforced Cementitious Composite for Building-scale 3D Printing[J].Cement and Concrete Composites,2018,90:1-13.
[69]FIGUEIREDO S C,RODRIGUEZ C R,AHMED Z Y,et al.An Approach to Develop Printable Strain Hardening Cementitious Composites[J].Materials and Design,2019,169:107651.
[70]王 里,王伯林,白 刚,等.3D打印混凝土各向异性力学性能研究[J].实验力学,2020,35(2):243-250.
WANG Li,WANG Bo-lin,BAI Gang,et al.Experimental Study on the Mechanical Anisotropy of 3D Printed Concrete[J].Journal of Experimental Mechanics,2020,35(2):243-250.
[71]CHRIST S,SCHNABEL M,VORNDRAN E,et al.Fiber Reinforcement During 3D Printing[J].Materials Letters,2015,139:165-168.
[72]肖建庄.再生混凝土[M].北京:中国建筑工业出版社, 2008.
XIAO Jian-zhuang.Recycled Concrete[M].Beijing:China Architecture & Building Press,2008.
[73]孙 坚,耿春雷,张作泰,等.工业固体废弃物资源综合利用技术现状[J].材料导报,2012,26(6):105-109.
SUN Jian,GENG Chun-lei,ZHANG Zuo-tai,et al.Present Situation of Comprehensive Utilization Technology of Industrial Solid Waste[J].Materials Reports,2012,26(6):105-109.
[74]肖建庄,陈立浩,叶建军,等.混凝土结构拆除技术与绿色化发展[J].建筑科学与工程学报,2019,36(5):1-10.
XIAO Jian-zhuang,CHEN Li-hao,YE Jian-jun,et al.Technology and Green Development of Demolition for Concrete Structures[J].Journal of Architecture and Civil Engineering,2019,36(5):1-10.
[75]肖建庄,李佳彬,兰 阳.再生混凝土技术研究最新进展与评述[J].混凝土,2003(10):17-20,57.
XIAO Jian-zhuang,LI Jia-bin,LAN Yang.Research on Recycled Aggregate Concrete — A Review[J].Concrete,2003(10):17-20,57.
[76]HAN Y L,YANG Z H,DING T,et al.Environmental and Economic Assessment on 3D Printed Buildings with Recycled Concrete[J].Journal of Cleaner Production,2020,278:123884.
[77]赵世颖,李 滢,康晓明,等.再生微粉混凝土抗冻性能试验研究[J].工业建筑,2020,50(11):112-118,96.
ZHAO Shi-ying,LI Ying,KANG Xiao-ming,et al.Experimental Study on Frost Resistance of Recycled Fine Powder Concrete[J].Industrial Construction,2020,50(11):112-118,96.
[78]TAN K H,DU H.Use of Waste Glass as Sand in Mortar:Part I — Fresh,Mechanical and Durability Properties[J].Cement and Concrete Composites,2013,35(1):109-117.
[79]杨震樱,周长顺.玻璃粉对再生混凝土力学性能的影响[J].硅酸盐通报,2020,39(12):3874-3880.
YANG Zhen-ying,ZHOU Chang-shun.Effect of Glass Powder on Mechanical Properties of Recycled Concrete[J].Bulletin of the Chinese Ceramic Society,2020,39(12):3874-3880.
[80]DUAN Z H,HOU S D,XIAO J Z,et al.Rheological Properties of Mortar Containing Recycled Powders from Construction and Demolition Wastes[J].Construction and Building Materials,2020,237:117622.
[81]XIAO J Z,ZOU S,YU Y,et al.3D Recycled Mortar Printed:System Development,Process Design,Material Properties and On-site Printing[J].Journal of Building Engineering,2020,32:101779.
[82]马国伟,柴艳龙,王 里,等.3D打印陶砂轻质混凝土的制备与力学性能测试[J].实验力学,2020,35(1):58-66.
MA Guo-wei,CHAI Yan-long,WANG Li,et al.Preparation and Mechanical Properties Testing of 3D Printed Ceramic Sand Lightweight Concrete[J].Journal of Experimental Mechanics,2020,35(1):58-66.
[83]肖 斐,崔洪涛,陈剑雄,等.超磨细石灰石粉高强混凝土的研究[J].硅酸盐通报,2010,29(6):1303-1307.
XIAO Fei,CUI Hong-tao,CHEN Jian-xiong,et al.Study on High Strength Concrete Containing Ultra-fine Limestone Powder[J].Bulletin of the Chinese Ceramic Society,2010,29(6):1303-1307.
[84]LIN J C,WU X,YANG W,et al.The Influence of Fine Aggregates on the 3D Printed Performance[C]//XIN S X.IOP Conference Series:Materials Science and Engineering.Bristol:IOP Publishing,2018:012079.
[85]EI CHEIKH K,REMOND S,KHALIL N,et al.Numerical and Experimental Studies of Aggregate Blocking in Mortar Extrusion[J].Construction and Building Materials,2017,145:452-463.
[86]MECHTCHERINE V,NERELLA V N,WILL F,et al.Large-scale Digital Concrete Construction — CONPrint3D Concept for On-site,Monolithic 3D-printing[J].Automation in Construction,2019,107:102933.
[87]杨凤玲,嵇银行,李玉寿,等.玻璃骨料粒径对玻璃混凝土性能影响的研究[J].混凝土,2012(8):78-80.
YANG Feng-ling,JI Yin-hang,LI Yu-shou,et al.Study on the Influence of Particle Size of the Glass Aggregate on the Performance of Glass Concrete[J].Concrete,2012(8):78-80.
[88]穆龙飞,冯竟竟,杨进波,等.页岩陶粒粒径对混凝土强度及热工性能影响研究[J].混凝土,2020(11):52-56.
MU Long-fei,FENG Jing-jing,YANG Jin-bo,et al.Experimental Study on the Influence of Shale Ceramsite Size on Strength and Thermal Properties of Concrete[J].Concrete,2020(11):52-56.
[89]杨悦增,邓红卫,彭剑平,等.骨料粒径对砂浆试件微观孔隙结构和单轴强度影响分析[J].采矿技术,2020,20(6):27-33.
YANG Yue-zeng,DENG Hong-wei,PENG Jian-ping,et al.Influence of Aggregate Size on Micro Pore Structure and Uniaxial Strength of Mortar Specimens[J].Mining Technology,2020,20(6):27-33.
[90]CESARETTI G,DINI E,KESTELIER X D,et al.Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology[J].Acta Astronautica,2014,93:430-450.
[91]GAO W,ZHANG Y B,RAMANUJAN D,et al.The Status,Challenges,and Future of Additive Manufacturing in Engineering[J].Computer-aided Design,2015,69:65-89.
[92]GIBSON I,ROSEN D W,STUCKER B.Additive Manufacturing Technologies[M].New York:Sprin-ger,2015.
[93]王香港,王 申,贾鲁涛,等.3D打印混凝土技术在新冠肺炎防疫方舱中的应用[J].混凝土与水泥制品,2020(4):1-4,13.
WANG Xiang-gang,WANG Shen,JIA Lu-tao,et al.Application of 3D Printing Technology in Epidemic Prevention Cabins During the Outbreak of COVID-19[J].China Concrete and Cement Products,2020(4):1-4,13.
[94]CESARETTI G,DINI E,KESTELIER X D,et al.Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology[J].Acta Astronautica,2014,93:430-450.
[95]JI G C,DING T,XIAO J Z,et al.A 3D Printed Ready-mixed Concrete Power Distribution Substation:Materials and Construction Technology[J].Materials,2019,12(9):1540.
[96]王栋民.固废与生态材料的未来发展(代序)[J].硅酸盐通报,2020,39(8):2357-2358.
WANG Dong-min.Future Development of Solid Waste and Ecological Materials[J].Bulletin of the Chinese Ceramic Society,2020,39(8):2357-2358.
[97]HARMAN J.The Shark's Paintbrush:Biomimicry and How Nature is Inspiring Innovation[M].Ashland:White Cloud Press,2013.
[98]PLESSIS A D,BABAFEMI A J,PAUL S C,et al.Biomimicry for 3D Concrete Printing:A Review and Perspective[J].Additive Manufacturing,2020,38:101823.
[99]YANG Y,SONG X,LI X J,et al.Recent Progress in Biomimetic Additive Manufacturing Technology:From Materials to Functional Structures[J].Advanced Materials,2018,30(36):1706539.
[100]文 俊,蒋友宝,胡佳鑫,等.3D打印建筑用材料研究、典型应用及趋势展望[J].混凝土与水泥制品,2020(6):26-29.
WEN Jun,JIANG You-bao,HU Jia-xin,et al.Research on Materials,Typical Applications and Development Trends of 3D Printing Buildings[J].China Concrete and Cement Products,2020(6):26-29.
[101]GB 50003—2011,砌体结构设计规范[S].
GB 50003—2011,Code for Design of Masonry Structures[S].
[102]GB 50010—2010,混凝土结构设计规范[S].
GB 50010—2010,Code for Design of Concrete Structures[S].
[103]GB 50204—2015,混凝土结构工程施工质量验收规范[S].
GB 50204—2015,Code for Acceptance of Constructional Quality of Concrete Structures[S].