|Table of Contents|

Unified Analysis Theory of Cable Stay and Its Applications(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2006年01期
Page:
68-77
Research Field:
Publishing date:
2006-03-20

Info

Title:
Unified Analysis Theory of Cable Stay and Its Applications
Author(s):
LIANG Peng XU Yue LIU Yong-jian
Key Laboratory for Bridge and Tunnel of Shaanxi Province, Chang'an University, Xi'an 710064, Shaanxi, China
Keywords:
bridge engineering unified analysis theory of cable stay catenary cable element equivalent modulus of elasticity cable-stayed bridge
PACS:
U448.41
DOI:
-
Abstract:
By analyzing all kinds of analysis theory of cable stays, the problems about cable stays were divided into two kinds, and based on the theory of catenary cable element, a unified analysis theory of cable stays was put forward. It could solve almost all static problems about single cable stay accurately and consistently. Authors made it easy to apply the catenary element to analysis of cable-stayed bridges. Based on the theory of catenary cable element and equivalent modulus of elasticity, cable characteristics which had different length and different stress were studied comparatively. It was concluded that nonlinearity of cable stays became more significant dramatically when its length exceeded 400 m. The error of the method of equivalent modulus of elasticity may be very large. Some kinds of errors can not be decreased even increase the number of load steps. It is recommended to use catenary cable element in the analysis of super long span cable-stayed bridges.

References:

[1] YIU P,BROTTON D M.Computation of Fabrication Dimensions for Cable-Stayed Bridges[J].The Structure Engineer,1988,66(15):237-243.
[2]LEVINSON D A,KANE T R.A Usable Solution of the Hanging Cable Problem[J].Computers and Structures,1993,46(5):821-844.
[3]李强兴.斜拉索静力解[J].桥梁建设,1996,26(3):21-24. LI Qiang-xing.Static Solution for Cable Stays[J].Bridge Construction,1996,26(3):21-24.
[4]程 纬,易伟建,刘光栋.斜拉桥柔性索线形分析及快速迭代计算方法[J].公路,1998,43(6):8-11. CHENG Wei,YI Wei-jian,LIU Guang-dong.Analysis of Flexile Cables of Cable-Stayed Bridges and Fast Iteration Solution[J].Highway,1998,43(6):8-11.
[5]魏建东,赵人达,车惠民.斜拉桥中拉索的静力设计[J].桥梁建设,1999,29(2):21-23. WEI Jian-dong,ZHAO Ren-da,CHE Hui-min.Static Design of Cable in Cable-Stayed Bridge[J].Bridge Construction,1999,29(2):21-23.
[6]刘明虎.几种方法进行斜拉索静力计算比较[C]//中国土木工程学会.中国土木工程学会桥梁及结构工程学会第十四届年会.上海:同济大学出版社,2000:661-666. LIU Ming-hu.Comparison of Several Algorithm of Static Analysis of Cable Stays[C]//CSCE.14th Conference of Society of Bridge and Structural Engineers of CSCE.Shanghai:Tongji University Press,2000:661-666.
[7]郝 超,裴岷山,强士中.大跨度斜拉桥拉索无应力长度的计算方法比较[J].重庆交通学院学报,2001,20(3):1-3. HAO Chao,PEI Min-shan,QIANG Shi-zhong.Comparison of Algorithm for Calculation Non-stress Length of Cable in Long-Span Cable-Stayed Bridge[J].Journal of Chongqing Jiaotong University,2001,20(3):1-3.
[8]ERNST H J.The E-Module of Rope with Consideration of the Dip[J].The Civil Engineering,1965,40(1):52-55.
[9]前田幸雄,林 正,前田研一.サグを考慮したケーブル部材の計算式[C]//日本土木学会.土木学会論文集.东京:日本土木学会,1977:123-126. MAEDA Y,LIN Z,MAEDA K.Caculation of Cable Member Considering Static Force[C]//Japanese Civil Academy.Civil Academy Symposium.Tokyo:Japanese Civil Academy,1977:123-126.
[10]後藤茂夫.柔ケーブル部材を有する構造物の解析[J].橋梁,1977,13(2):9-15. GOTO S.Analysis of a Makeup Hoving a Soft Cable Member[J].Bridge,1977,13(2):9-15.
[11]後藤茂夫.柔ケーブル材の接線剛性方程式について[C]//日本土木学会.土木学会論文集.东京:日本土木学会,1978:41-49. GOTO S.A Tangent Line Hardness Equation of Soft Cable Materials[C]//Japanese Civil Academy.Tokyo:Japanese Civil Academy,1978:41-49.
[12]GAMBHIR M L,BATCHELOR B A.Finite Element for 3-D Pre-stressed Cable Nets[J].International Journal for Numerical Methods in Engineering,1977,11(5):1 699-1 718.
[13]李国平.斜拉索非线性分析的状态修正法[J].同济大学学报:自然科学版,2000,28(1):1-4. LI Guo-ping.State Revision Method in Nonlinear Analysis of Stay Cable[J].Journal of Tongji University:Natural Science,2000,28(1):1-4.
[14]唐建民,何署廷.悬索结构非线性有限元分析[J].河海大学学报,1998,26(6):45-49. TANG Jian-min,HE Shu-ting.A Nonlinear Finite Element Method for Analyzing Cable Strctures[J].Jouranal of Hohai University,1998,26(6):45-49.
[15]ALI H M,ABDEL-GHAFFAR A M.Modeling the Nonlinear Seismic Behavior of Cable-Stayed Bridges with Passive Control Bearings[J].Computers and Structures,1995,54(3):461-492.
[16]唐建民,董 明,钱若军.张拉结构非线性分析的五节点等参单元[J].计算力学学报,1997,14(1):108-113. TANG Jian-min,DONG ming,QIAN Ruo-jun.A Finite Element Method with Five-Node Isoparametric Element for Nonlinear Analysis of Tension Structures[J].Journal of Computation Mechanics,1997,14(1):108-113.
[17]O'BRIEN M T.FRANCIS A J.Cable Movements Under Two-Dimensional Loading[J].Journal of Structural Engineering,1964,90(3):89-123.
[18]O'BRIEN M T.General Solution of Suspended Cable Problems[J].Journal of Structural Engineering,1967,93(1):1-26.
[19]PEYROT A H,GOULOIS A M.Analysis of Cable Structures[J].Computers and Structures,1979,10(5):805-813.
[20]JAYARAMAN H B,KNUDSON W C.A Curved Element for the Analysis of Cable Structures[J].Computers and Structures,1981,14(3):325-333.
[21]IRVINE H M.Cable Structures[M].Combridge:The MIT Press,1981.
[22]ABBAS S.Nonlinear Geometric,Material and Time Dependent Analysis of Segmentally Erected,Three Dimensional Cable Stayed Bridges[D].Berkeley:University of California,1993.
[23]肖汝诚.确定大跨径桥梁合理设计状态理论与方法研究[D].上海:同济大学,1996. XIAO Ru-cheng.Study on the Theory and Method of the Reasonable Design State of the Long-Span Bridge[D].Shanghai:Tongji University,1996.
[24]潘永仁.悬索桥的几何非线性静力分析及工程控制[D].上海:同济大学,1996. PAN Yong-ren.Geometric Nonlinear Static Analysis and Construction Control of Suspension Bridges[D].Shanghai:Tongji University,1996.
[25]KAROUMI R.Some Modeling Aspects in the Nonlinear Finite Element Analysis of Cable Supported Bridges[J].Computers and Structures,1999,71(4):397-412.
[26]程 进.缆索承重桥梁非线性空气静力稳定性研究[D].上海:同济大学,2000. CHENG Jin.Study on Nonlinear Aerostatic Stability of Cable-Supported Bridges[D].Shanghai:Tongji University,2000.
[27]KIM H K,LEE M J,CHANG S P.Non-linear Shape-Finding Analysis of a Self-anchored Suspension Bridge[J].Engineering Structures,2002,24(12):1 547-1 559.
[28]唐茂林.大跨度悬索桥空间几何非线性分析与软件开发[D].成都:西南交通大学,2003. TANG Mao-lin.3D Geometric Nonlinear Analysis of Long-Span Suspension Bridge and Its Software Development[J].Chengdu:Southwest Jiaotong University,2003.
[29]罗喜恒.复杂悬索桥施工过程精细化分析研究[D].上海:同济大学,2004. LUO Xi-heng.Fine Analysis of Complicated Suspension Bridge During Construction Process[D].Shanghai:Tongji University,2004.
[30]CHEN W F,LUI E M.Stability Design of Steel Frames[M].London:CRC Press,Inc,1991.
[31]俞茂宏,ODA Y,盛 谦,等.统一强度理论的发展及其在土木水利等工程中的应用和经济意义[J].建筑科学与工程学报,2005,22(1):24-41. YU Mao-hong,ODA Y,SHENG Qian,et al.Development of Unified Strength Theory and Its Applications in Civil Engineering and Its Economic Significance[J].Journal of Architecture and Civil Engineering,2005,22(1):24-41.
[32]王元清,张 勇,石永久,等.吊索与钢管混凝土拱桥新型节点承载性能分析[J].建筑科学与工程学报,2005,22(3):55-58. WANG Yuan-qing,ZHANG Yong,SHI Yong-jiu,et al.Analysis of Load Capacity of New-Style Joints Between Cable and Concrete-Filled Steel Tube Arch Bridge[J].Journal of Architecture and Civil Engineering,2005,22(3):55-58.
[33]陈政清.斜拉索风雨振现场观测与振动控制[J].建筑科学与工程学报,2005,22(4):5-10. CHEN Zheng-qing.On-Site Observation of Wind-Rain Induced Vibration of Stay Cables and Its Control[J].Journal of Architecture and Civil Engineering,2005,22(4):5-10.
[34]李忠献,武魏娜.大型结构非线性物理参数识别的线性化算法[J].建筑科学与工程学报,2005,22(2):15-20. LI Zhong-xian,WU Wei-na.Linearization Method to Identify Nonlinear Physical Parameters of Large Structures[J].Journal of Architecture and Civil Engineering,2005,22(2):15-20.
[35]GIMSING N J.Cable Supported Bridges[M].2nd ed.Chichester:John Wiley,1997.
[36]JTJ 027-96,公路斜拉桥设计规范[S]. JTJ 027-96,Code for Design of Highway Cable-Stayed Bridges[S].

Memo

Memo:
-
Last Update: 2006-03-20