|Table of Contents|

Displacement Governing Equations and General Solution of Circular Spherical Thick Shallow Shells(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2007年03期
Page:
36-42
Research Field:
Publishing date:
2007-09-20

Info

Title:
Displacement Governing Equations and General Solution of Circular Spherical Thick Shallow Shells
Author(s):
HUANG Hui-rong1 HAO Ji-ping2 HUANG Yi3
1. School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China; 2. School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China; 3. School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China
Keywords:
thick shallow spherical shell circular spherical thick shallow shell displacement function displacement fundamental equation governing equation
PACS:
TU33
DOI:
-
Abstract:
The displacement fundamental equations of the thick shallow shells concerning five independent variables, ie five middle surface displacements were established based on the displacement fundamental equations of the thick shells by transverse shearing deformation and basic hypothesis on shallow shells, displacement fundamental equations of thick shallow spherical shells in orthogonal curvilinear coordinates and in polar coordinates were obtained. Authors introduced four assistant displacement functions to solve displacement fundamental equations of circular spherical thick shallow shells, which were tenth-order differential equations with variable coefficient and set up the decoupled governing differential equations, then obtained five displacement components through four assistant displacement functions. The results show that the displacements of equations of thick shallow shells degenerate to the displacement equations of the thick shallow spherical shells and thin shallow spherical shells, which demonstrate the generality of derived equations.

References:

[1] 曹志远.板壳振动理论[M].北京:中国铁道出版社,1989. CAO Zhi-yuan.Theory of Plates and Shells Vibration[M].Beijing:China Railway Publishing House,1989.
[2]黄克智.弹性薄壳理论[M].北京:科学出版社,1988. HUANG Ke-zhi.Elastic Thin-shell Theory[M].Beijing:Science Press,1988.
[3]诺沃日洛夫V V.薄壳理论[M].北京石油学院材料力学教研组,译.北京:科学出版社,1959. NOVOZHILOV V V.Thin Shell Theory[M].Translated by Material Mechanic Teaching and Research Group of Beijing Institute of Petroleum.Beijing:Science Press,1959.
[4]何福保,沈亚鹏.板壳理论[M].西安:西安交通大学出版社,1993. HE Fu-bao,SHEN Ya-peng.Theory of Plates and Shells[M].Xi'an:Xi'an Jiaotong University Press,1993.
[5]CLIVE L D.Introduction to the Theory of Shells[M].New York:Pergamon Press,1974.
[6]黄会荣,郝际平.考虑弯曲内力轴对称旋转壳的非线性协调方程[J].西北大学学报:自然科学版,1999,29(5):377-380. HUANG Hui-rong,HAO Ji-ping.The Nonlinear Coordinate Equations of Rotation Shell with Rotational Symmetry by Considering Bending Internal Forces[J].Journal of Northwest University:Natural Science Edition,1999,29(5):377-380.
[7]黄会荣,李 革.轴对称旋转薄壳的非线性控制方程[J].西安建筑科技大学学报:自然科学版,2000,32(2):192-195. HUANG Hui-rong,LI Ge.Nonlinear Governing Equations of the Rotational Thin Shell with Axial Symmetry[J].Journal of Xi'an University of Architecture and Technology:Natural Science Edition,2000,32(2):192-195.
[8]黄会荣,黄 义.基于精确本构关系中厚壳振动的位移型基本方程[J].西北大学学报:自然科学版,2002,32(5):20-24. HUANG Hui-rong,HUANG Yi.Displacemental Fundamental Equations of the Shells Vibration by Transvers Shearing Defomation[J].Journal of Northwest University:Natural Science Edition,2002,32(5):20-24.
[9]黄会荣,黄 义.考虑横向剪切变形厚球壳的位移型动力方程[J].西安建筑科技大学学报:自然科学版,2002,34(2):170-175. HUANG Hui-rong,HUANG Yi.Displacemental Dynamical Equations of the Spherical Shells by Transverse Shearing Deformation[J].Journal of Xi'an University of Architecture and Technology:Natural Science Edition,2002,34(2):170-175.
[10]黄会荣,黄 义.考虑横向剪切变形厚旋转壳振动的位移型基本方程[J].空间结构,2003,10(1):3-7. HUANG Hui-rong,HUANG Yi.Displacemental Vibration Equations of Thick Shells of Revolution Considering Transverse Shear Deformation[J].Spatial Structures,2003,10(1):3-7.

Memo

Memo:
-
Last Update: 2007-09-20