|Table of Contents|

Analysis of Deficiency of ANSYS Geometric Nonlinear Arithmetic Based on Finite Deformation Theory(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2008年02期
Page:
106-110
Research Field:
Publishing date:
2008-06-20

Info

Title:
Analysis of Deficiency of ANSYS Geometric Nonlinear Arithmetic Based on Finite Deformation Theory
Author(s):
GAO Chen-yan YIN Guan-sheng MA Chao
School of Science, Chang'an University, Xi'an 710064, Shaanxi, China
Keywords:
ANSYS finite deformation theory geometric nonlinearity conjugacy relation
PACS:
TU12
DOI:
-
Abstract:
The definition of strain, the relationship between computation stress and true stress of body, deformation as well as geometric nonlinear computation of unbalance force were analyzed in details by using ANSYS based on finite deformation theory. The calculation values of rod element Link8 and 2-D element Plane42 solved by ANSYS were compared with the theoretical solutions. The comparison points out that ANSYS geometric nonlinear arithmetic is deficient, ie without considering the conjugacy relation of stress and strain, it is an approximate nonlinear calculation.

References:

[1] 凌道盛,徐 兴. 非线性有限元及程序[M].杭州:浙江大学出版社,2004:153-187. LING Dao-sheng,XU Xing.Nonlinear Finite Element and Procedures[M].Hangzhou:Zhejiang University Press,2004:153-187.
[2]徐 巍.ANSYS二次开发及大变形性能研究[D].北京:中国农业大学,2005. XU Wei.Research on the Second Development of ANSYS and Large Deformation Properties[D].Beijing:China Agricultural University,2005.
[3]李明瑞.梁板壳的几何大变形--从近似的非线性理论到有限变形理论[J].力学与实践,2003,25(3):1-8. LI Ming-rui.The Geometric Large Deformation of Beam,Plate and Shell-from the Approximate Nonlinear Theory to the Finite Deformation Theory[J].Mechanics and Practice,2003,25(3):1-8.
[4]ANSYS Inc.ANSYS6.1 Documentation[M].Pittsburgh:ANSYS Inc,2004.
[5]徐 魏,周 喆.对ANSYS的Link8杆单元的几何非线性性能的评述[J].中国农业大学学报,2005,10(3):111-114. XU Wei,ZHOU Zhe.Review on Geometric Non-linear Performance of ANSYS' Link8 Element[J].Journal of China Agricultural University,2005,10(3):111-114.
[6]赵均海,王敏强,魏雪英.高等有限元[M].武汉:武汉理工大学出版社,2004. ZHAO Jun-hai,WANG Min-qiang,WEI Xue-ying.Higher Finite Element Method[M].Wuhan:Wuhan University of Technology Press,2004.
[7]程 磊,瞿伟廉.基于Hilbert-Huang变换理论的非平稳数据处理[J].建筑科学与工程学报,2007,24(1):26-30. CHENG Lei,QU Wei-lian.Non-stationary Data Processing Based on Hilbert-Huang Transform Theory[J].Journal of Architecture and Civil Engineering,2007,24(1):26-30.

Memo

Memo:
-
Last Update: 2008-06-20