|Table of Contents|

Cross Section Selection of Concrete-filled Steel Tube Pier Columns(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2020年01期
Page:
94-101
Research Field:
Publishing date:

Info

Title:
Cross Section Selection of Concrete-filled Steel Tube Pier Columns
Author(s):
ZHANG Guo-jing LIU Yong-jian JIANG Lei
( School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
bridge engineering selection of cross section compressive bending capacity concrete-filled steel tube pier column boundary eccentricity ratio
PACS:
TU318
DOI:
10.19815/j.jace.2018.10006
Abstract:
In order to obtain an easy way to operate optimal selection method for single limb cross section of concrete-filled steel tube(CFST)pier column, the research of section optimization was carried out by the means of three common cross sections in engineering, including circular, rectangular and rectangular double-skin steel tubes. The economic index named boundary eccentricity ratio which could represent the cross section compressive bending capacity based on the unified theory and the method of equivalent cross section was presented. The effects of hoop coefficient, rectangular cross section aspect ratio, rectangular hollow section hollowed out rate on the boundary eccentricity ratio and the economy of the three CFST cross sections were studied. The results show that with the increasing of hoop coefficient, rectangular cross section aspect ratio and rectangular hollow section hollowed out rate, the economy of rectangular and rectangular double-skin steel tube cross section is getting better. When hoop coefficient is greater than 0.8, rectangular cross section aspect ratio is greater than 2.0 and rectangular hollow section hollowed out rate is greater than 0.3, the influences of the three parameters on boundary eccentricity ratio are small. The boundary eccentricity ratio can describe the economy of single limb cross section of CFST pier column preferably. The preferred cross-section of the CFST pier column can be obtained by searching the boundary eccentricity ratio table under the condition of given material and internal force. This method has certain reference value to the real project.

References:

[1] 周绪红,刘永健,姜 磊,等.PBL加劲型矩形钢管混凝土结构力学性能研究综述[J].中国公路学报,2017,30(11):45-62.
ZHOU Xu-hong,LIU Yong-jian,JIANG Lei,et al.Review on Mechanical Behavior Research of Concrete Filled Rectangular Hollow Section Tube Stiffened with PBL[J].China Journal of Highway and Transport,2017,30(11):45-62.
[2]高诣民,刘永健,周绪红,等.高性能钢管混凝土组合桁梁桥[J].中国公路学报,2018,31(12):174-187.
GAO Yi-min,LIU Yong-jian,ZHOU Xu-hong,et al.High-performance CFST Composite Truss Bridge[J].China Journal of Highway and Transport,2018,31(12):174-187.
[3]刘 彬,刘永健,周绪红,等.中等跨径装配式矩形钢管混凝土组合桁梁桥设计[J].交通运输工程学报,2017,17(4):20-31.
LIU Bin,LIU Yong-jian,ZHOU Xu-hong,et al.Design of Mid-span Fabricated RCFST Composite Truss Bridge[J].Journal of Traffic and Transportation Engineering,2017,17(4):20-31.
[4]HAN L H,LI W,BJORHOVDE R.Developments and Advanced Applications of Concrete-filled Steel Tubular(CFST)Structures:Members[J].Journal of Constructional Steel Research,2014,100:211-228.
[5]吴庆雄,黄育凡,陈宝春.钢管混凝土组合桁梁-格构墩轻型桥梁非线性地震响应分析[J].工程力学,2015,32(12):90-98,116.
WU Qing-xiong,HUANG Yu-fan,CHEN Bao-chun.Nonlinear Aseismic Performance of Lightweight Bridge with CFST Composite Truss Girder and Lattice Pier[J].Engineering Mechanics,2015,32(12):90-98,116.
[6]周汉平,魏 军,黄 勇,等.汶川克枯大桥钢结构制造工艺[J].西南公路,2019(2):6-12.
ZHOU Han-ping,WEI Jun,HUANG Yong,et al.Manufacturing Technology of Steel Structure for Wenchuan Keku Bridge[J].Southwest Highway,2019(2):6-12.
[7]刘永健,马印平,田智娟,等.矩形钢管混凝土组合桁梁连续刚构桥实桥试验[J].中国公路学报,2018,31(5):53-62.
LIU Yong-jian,MA Yin-ping,TIAN Zhi-juan,et al.Field Test of Rectangular Concrete Filled Steel Tubular Composite Truss Bridge with Continuous Rigid System[J].China Journal of Highway and Transport,2018,31(5):53-62.
[8]陈宝春.钢管混凝土拱桥[M].北京:人民交通出版社股份有限公司,2016.
CHEN Bao-chun.Concrete-filled Steel Tube Arch Bridge[M].Beijing:China Communications Press Co.,Ltd,2016.
[9]刘永健,姜 磊,张 宁.钢管混凝土中钢管的纵向容许应力[J].建筑科学与工程学报,2015,32(6):1-7.
LIU Yong-jian,JIANG Lei,ZHANG Ning.Longitudinal Allowable Stress of Steel Tube in Concrete-filled Steel Tube[J].Journal of Architecture and Civil Engineering,2015,32(6):1-7.
[10]姜 磊,刘永健,侯蓓蓓.钢管混凝土拱肋轴力-应变关系[J].中国公路学报,2016,29(11):90-98.
JIANG Lei,LIU Yong-jian,HOU Bei-bei.Axial Force-strain Relationship of Concrete-filled Steel Tube Arch Rib[J].China Journal of Highway and Transport,2016,29(11):90-98.
[11]聂建国,陶慕轩.钢管混凝土截面形状的比选研究[J].建筑结构,2008,38(7):106-109.
NIE Jian-guo,TAO Mu-xuan.Study on Comparison and Optimization of Section Types of Concrete-filled Steel Tube[J].Building Structure,2008,38(7):106-109.
[12]陶 忠,韩林海.中空夹层钢管混凝土的研究进展[J].哈尔滨工业大学学报,2003,35(增):144-146.
TAO Zhong,HAN Lin-hai.Development in the Research of Concrete-filled Double-skin Steel Tubes[J].Journal of Harbin Institute of Technology,2003,35(S):144-146.
[13]赵均海,郭红香,魏雪英.圆中空夹层钢管混凝土柱承载力研究[J].建筑科学与工程学报,2005,22(1):50-54.
ZHAO Jun-hai,GUO Hong-xiang,WEI Xue-ying.Research on Bearing Capacity of Concrete Filled Double Skin Steel Tubes Column[J].Journal of Architecture and Civil Engineering,2005,22(1):50-54.
[14]张国靖,刘永健,侯蓓蓓,等.薄壁空心钢箱混凝土墩抗震性能参数分析[J].建筑科学与工程学报,2019,36(1):101-111.
ZHANG Guo-jing,LIU Yong-jian,HOU Bei-bei,et al.Parameter Analysis of Seismic Performance of Hollow Thin-walled Steel-box Concrete Pier[J].Journal of Architecture and Civil Engineering,2019,36(1):101-111.
[15]KNOWLES R B,PARK R.Strength of Concrete Filled Steel Tubular Columns[J].Journal of the Structural Division,1969,95(12):2565-2587.
[16]SHAKIR-KHALIL H,ZEGHICHE Z.Experimental Behavior of Concrete-filled Rolled Rectangular Hollow-Section Columns[J].The Structural Engineer,1989,67(19):345-353
[17]钟善桐.钢管混凝土结构[M].3版.北京:清华大学出版社,2003.
ZHONG Shan-tong.Concrete-filled Steel Tube Structure[M].3rd ed.Beijing:Tsinghua University Press,2003.
[18]钟善桐.圆形和方形钢管混凝土柱工作性能与经济性比较[J].哈尔滨工业大学学报,2003,35(增):27-30.
ZHONG Shan-tong.The comparison of Behaviors and Economics for Concrete-filled Steel Tube(CFST)with Circular and Square Cross Sections[J].Journal of Harbin Institute of Technology,2003,35(S):27-30.
[19]GB 50923—2013,钢管混凝土拱桥技术规范[S].
GB 50923—2013,Technical Code for Concrete-filled Steel Tube Arch Bridge[S].
[20]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社,2004.
HAN Lin-hai.Concrete Filled Steel Tubular Structures:Theory and Practice[M].Beijing:Science Press,2004.
[21]CECS 159:2004,矩形钢管混凝土结构技术规程[S].
CECS 159:2004,Technical Specification for Structures with Concrete-filled Rectangular Steel Tube Members[S].
[22]王志滨.矩形中空夹层钢管混凝土压弯构件力学性能研究[D].福州:福州大学,2005.
WANG Zhi-bing.Behaviour of Concrete Filled Double-skin Steel Tubular Beam-columns with Rectangular Sections[D].Fuzhou:Fuzhou University,2005.

Memo

Memo:
-
Last Update: 2020-01-13