|Table of Contents|

Effect of Long-link EBF Mechanism on Seismic Performance of Steel CBF(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2020年03期
Page:
10-17
Research Field:
Publishing date:

Info

Title:
Effect of Long-link EBF Mechanism on Seismic Performance of Steel CBF
Author(s):
LI Gang ZHANG Tian-hao DONG Zhi-qian
(State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China)
Keywords:
steel concentrically braced frame long-link EBF mechanism incremental dynamic analysis collapse margin ratio parameteric analysis
PACS:
TU391
DOI:
10.19815/j.jace.2019.05058
Abstract:
In order to study the effect of long-link eccentrically braced frame(EBF)mechanism caused by part of braces in chevron concentrically braced frame(CBF)failing in earthquakes on collapse resistance capacity of structure, a 6-story chevron CBF structure was built in ABAQUS. Incremental dynamic analysis(IDA)and vulnerability analysis were carried out to compare the collapse resistance capacity with and without long-link EBF mechanism, and analyzed structural damage evolutionary process. The results show that long-link EBF mechanism changes the failure process and the generation and development of weak story are controlled, which significantly affects structural seismic performance. The collapse margin ratio is raised by 20% of the numerical example models. The flexural stiffness of the beam affects long-link EBF mechanism that large stiffness goes against the formation of the mechanism and reduces collapse resistance capacity. Therefore, long-link EBF mechanism should be considered in seismic design of chevron CBF, or the structural collapse capacity will be underestimated.

References:

[1] 黄炳生.日本神户地震中建筑钢结构的震害及启示[J].建筑结构,2000,30(9):24-25.
HUANG Bing-sheng.The Damage and Enlightenment of Steel Structure Building in Kobe Earthquake in Japan[J].Building Structure,2000,30(9):24-25.
[2]刘洪波,谢礼立,邵永松.钢框架结构的震害及其原因[J].世界地震工程,2006,22(4):47-51.
LIU Hong-bo,XIE Li-li,SHAO Yong-song.The Earthquake Damage of Steel Frame Buildings and the Causes of Brittle Facture[J].World Earthquake Engineering,2006,22(4):47-51.
[3]MAHIN S A.Lessons from Damage to Steel Buildings During the Northridge Earthquake[J].Engineering Structures,1998,20(4/5/6):261-270.
[4]GB 50011—2010,建筑抗震设计规范[S].
GB 50011—2010,Code for Seismic Design of Buildings[S].
[5]JGJ 99—98,高层民用建筑钢结构技术规程[S].
JGJ 99—98,Technical Specification for Steel Structure of Tall Buildings[S].
[6]KHATIB I F,MARIN S A,PISITER K S.Seismic Behavior of Concentrically Brace Steel Frames[R].Berkeley:University of California,1988.
[7]王天涯,于海丰,张 岩.拉链柱式中心支撑钢框架支撑设计方法研究[J].河北科技大学学报,2014,35(5):466-472.
WANG Tian-ya,YU Hai-feng,ZHANG Yan.Study of Brace Design Method for the Zipper Frames of Zipper Struts[J].Journal of Hebei University of Science and Technology,2014,35(5):466-472.
[8]于海丰,张 岩,张文元,等.拉链柱支撑钢框架结构振动台试验研究[J].建筑结构学报,2016,37(2):55-62.
YU Hai-feng,ZHANG Yan,ZHANG Wen-yuan,et al.Shaking Table Test of Zipper Frames[J].Journal of Building Structures,2016,37(2):55-62.
[9]童根树,张 磊,罗桂发,等.一种免承重力钢框架支撑体系[J].钢结构,2009,24(增):237-241.
TONG Gen-shu,ZHANG Lei,LUO Gui-fa,et al.Steel Bracing Systems Without Stresses Induced by Gravity Loads[J].Steel Construction Supplement,2009,24(S):237-241.
[10]童根树,罗桂发,张 磊.横梁未加强型人字撑框架体系的抗侧性能[J].工程力学,2011,28(8):89-98.
TONG Gen-shu,LUO Gui-fa,ZHANG Lei.Lateral Resistance of Chevron-braced Frames with Weak Beams[J].Engineering Mechanics,2011,28(8):89-98.
[11]FUKUTA T,NISHIYAMA I,YAMANOUCHI H,et al.Seismic Performance of Steel Frames with Inverted V Braces[J].Journal of Structural Engineering,1989,115(8):2016-2028.
[12]BRADLEY C R,FAHNESTOCK L A,HINES E M,et al.Full-scale Cyclic Testing of Low-ductility Concentrically Braced Frames[J].Journal of Structural Engineering,2017,143(6):04017029.
[13]SIZEMORE J G,FAHNESTOCK L A,HINES E M,et al.Parametric Study of Low-ductility Concentrically Braced Frames Under Cyclic Static Loading[J].Journal of Structural Engineering,2017,143(6):04017032.
[14]SIZEMORE J,FAHNESTOCK L A,HINES E M.Seismic Performance Assessment of Low-ductility Concentrically Braced Frames[J].Journal of Structural Engineering,2019,145(4):04019016.
[15]董志骞.基于能力储备的中心支撑钢框架结构抗震性能研究[D].大连:大连理工大学,2018.
DONG Zhi-qian.Seismic Performance Evaluation of Steel Concentrically Braced Frames Based on Reserve Capacity[D].Dalian:Dalian University of Technology,2018.
[16]宋 彬,顾 强.近场地震下人字形中心支撑钢框架基于能量的性态设计方法[J].苏州科技学院学报:工程技术版,2015,28(4):24-29.
SONG Bin,GU Qiang.Energy-based Seismic Design of Chevron Concentrically Braced Steel Frames Under the Near-field Earthquake[J].Journal of Suzhou University of Science and Technology:Engineering and Technology,2015,28(4):24-29.
[17]顾 强,孙国华.基于能量的钢结构抗震性态设计研究进展[J].苏州科技学院学报:工程技术版,2015,28(1):1-17.
GU Qiang,SUN Guo-hua.Energy-based Seismic Design of Steel Structure:State of Development[J].Journal of Suzhou University of Science and Technology:Engineering and Technology,2015,28(1):1-17.
[18]叶列平,程光煜,曲 哲,等.基于能量抗震设计方法研究及其在钢支撑框架结构中的应用[J].建筑结构学报,2012,33(11):36-45.
YE Lie-ping,CHENG Guang-yu,QU Zhe,et al.Study on Energy-based Seismic Design Method and Application on Steel Braced Frame Structures[J].Journal of Building Structures,2012,33(11):36-45.
[19]FEMA P695,Quantification of Building Seismic Performance Factors[S].
?

Memo

Memo:
-
Last Update: 2020-06-08