[1] LECUN Y,BENGIO Y,HINTON G.Deep Learning[J].Nature,2015,521(7553):436-444.
[2]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based Learning Applied to Document Recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[3]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet Classification with Deep Convolutional Neural Networks[J].Communications of the ACM,2017,60(6):84-90.
[4]黄新波,胡潇文,朱永灿,等.基于卷积神经网络算法的高压断路器故障诊断[J].电力自动化设备,2018,38(5):136-140,147.
HUANG Xin-bo,HU Xiao-wen,ZHU Yong-can,et al.Fault Diagnosis of High-voltage Circuit Breaker Based on Convolution Neural Network[J].Electric Power Automation Equipment,2018,38(5):136-140,147.
[5]吴春志,江鹏程,冯辅周,等.基于一维卷积神经网络的齿轮箱故障诊断[J].振动与冲击,2018,37(22):51-56.
WU Chun-zhi,JIANG Peng-cheng,FENG Fu-zhou,et al.Faults Diagnosis Method for Gearboxes Based on a 1-D Convolutional Neural Network[J].Journal of Vibration and Shock,2018,37(22):51-56.
[6]ABDELJABER O,AVCI O,KIRANYAZ S,et al.Real-time Vibration-based Structural Damage Detection Using One-dimensional Convolutional Neural Networks[J].Journal of Sound and Vibration,2017,388:154-170.
[7]李雪松,马宏伟,林逸洲.基于卷积神经网络的结构损伤识别[J].振动与冲击,2019,38(1):159-167.
LI Xue-song,MA Hong-wei,LIN Yi-zhou.Structural Damage Identification Based on Convolution Neural Network[J].Journal of Vibration and Shock,2019,38(1):159-167.
[8]ZHANG Y,MIYAMORI Y,MIKAMI S,et al.Vibration-based Structural State Identification by a 1-Dimensional Convolutional Neural Network[J].Computer-aided Civil and Infrastructure Engineering,2019,34(9):822-839.
[9]朱宏平,张 源.基于自适应BP神经网络的结构损伤检测[J].力学学报,2003,35(1):110-116.
ZHU Hong-ping,ZHANG Yuan.Application of Self-adaptive BP Neural Networks to the Detection of Structural Damage[J].Acta Mechanica Sinica,2003,35(1):110-116.
[10]杨佑发,熊 丽,陈 远.基于神经网络的框架结构损伤多重分步识别[J].建筑科学与工程学报,2011,28(1):106-111.
YANG You-fa,XIONG Li,CHEN Yuan.Multi-stage Damage Identification for Frame Structures Based on Neural Network[J].Journal of Architecture and Civil Engineering,2011,28(1):106-111.
[11]YU D,DENG L.Deep Learning and Its Applications to Signal and Information Processing[J].IEEE Signal Processing Magazine,2011,28(1):145-154.
[12]HE K,ZHANG X,REN S,et al.Delving Deep into Rectifiers:Surpassing Human-level Performance on ImageNet Classification[C]//IEEE.International Conference on Computer Vision.New York:IEEE,2015:1026-1034.
[13]LI T,MENG Z J,NI B B,et al.Robust Geometric lp-norm Feature Pooling for Image Classification and Action Recognition[J].Image and Vision Computing,2016,55(S1):64-76.
[14]MANCEV D,TODOROVIC B.A Primal Sub-gradient Method for Structured Classification with the Averaged Sum Loss[J].International Journal of Applied Mathematics and Computer Science,2014,24(4):917-930.
[15]GHOSH A,KUMAR H,SASTRY P.Robust Loss Functions Under Label Noise for Deep Neural Networks[C]//AAAI.31st AAAI Conference on Artificial Intelligence.Palo Alto:AAAI,2017:1919-1925.
[16]CHUI C K.Introduction to Wavelets[M].New York:Academic Press,1992.
[17]DOKKYUN Y,JAEHYUN A,SANGMIN J.An Effective Optimization Method for Machine Learning Based on ADAM[J].Applied Sciences,2020,10(3):1073.
[18]SUN P,LI A Q,DING Y L,et al.Study on Parameters for Identification of Wavelet Packet Energy Spectrum for Structural Damage Alarming[J].Advanced Materials Research,2011,163-167:2693-2698.
[19]DURANT T,OLSON E,SCHULZ W,et al.Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes[J].Clinical Chemistry,2017,63(12):1847-1855.