|Table of Contents|

Study on Mechanical Behavior of GFRP-steel Composite Truss Girder with Different Structural Combination Forms(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2022年02期
Page:
61-68
Research Field:
结构工程
Publishing date:

Info

Title:
Study on Mechanical Behavior of GFRP-steel Composite Truss Girder with Different Structural Combination Forms
Author(s):
HAO Jian-ming LIU Yuan HAO Xian-wu
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
GFRP-steel composite truss girder midspan deflection member replacement common working coefficient
PACS:
TU311
DOI:
10.19815/j.jace.2021.05042
Abstract:
In order to study the mechanical behavior of glass fiber reinforced plastic(GFRP)-steel composite structure, the physical and mechanical parameters of GFRP material were determined according to the theory of anisotropic elasticity mechanics. Based on the engineering example of the working bridge in the Huaihe River estuary gate area, the finite element model of the truss girder based on the plate-shell element was established by ABAQUS, and the mechanical behavior were analyzed. The structural combination scheme of replacing some GFRP members with large stress into steel members was adopted, and the changes of structural self-weight, mid-span deflection and element stress were compared and analyzed to explore a reasonable member replacement scheme. The concept of unified bending stiffness of composite truss girder was introduced, and the truss structure was equivalent to single beam model for simplified calculation. The cross-section common working coefficient was introduced to describe the bending contribution of truss girder web member to integral structure. The results show that under the action of basic load combination, the stress of each component of GFRP truss girder is far less than the material strength, and there is a high safety reserve. Replacement of some members can effectively increase the vertical stiffness of the structure and reduce the midspan deflection under load. The scheme of replacing the upper and lower chords with Q345 steel has a great contribution to enhancing the vertical stiffness of the truss girder, and the structural form is reasonable. The research can provide reference for the design of similar projects.

References:

[1] 陈肇元,徐有邻,钱稼茹.土建结构工程的安全性与耐久性[J].建筑技术,2002,33(4):248-253.
CHEN Zhao-yuan,XU You-lin,QIAN Jia-ru.Safety and Durability of Structural Works in Civil Engineering[J].Architecture Technology,2002,33(4):248-253.
[2]牛荻涛,杨德柱,罗大明.混凝土结构耐久性评定方法体系[J].建筑结构,2021,51(17):115-121,114.
NIU Di-tao, YANG De-zhu, LUO Da-ming.Durability Assessment Method of Existing Concrete Structures[J].Building Structure, 2021,51(17):115-121,114.
[3]GILBY J.Pultrusion Provides Roof Solution[J].Reinforced Plastics,1998,42(6):48-52.
[4]徐以扬,方 海,刘伟庆.复合材料拉挤型材在桁架桥梁结构中的应用与发展[J].世界桥梁,2010,38(4):32-34,38.
XU Yi-yang,FANG Hai,LIU Wei-qing.Application and Development of Composite Extruded Profile in Truss Bridge Structure[J].World Bridges,2010,38(4):32-34,38.
[5]KOSTOPOULOS V,MARKOPOULOS Y P,VLACHOS D E,et al.Design and Construction of a Vehicular Bridge Made of Glass/Polyester Pultruded Box Beams[J].Plastics,Rubber and Composites,2005,34(4):201-207.
[6]冯 鹏,田 野,覃兆平.纤维增强复合材料拉挤型材桁架桥静动力性能研究[J].工业建筑,2013,43(6):36-41.
FENG Peng,TIAN Ye,QIN Zhao-ping.Static and Dynamic Behavior of a Truss Bridge Made of FRP Pultruded Profiles[J].Industrial Construction,2013,43(6):36-41.
[7]王进潇,程 斌,闫兴非,等.全FRP车行桥梁结构设计与分析[J].公路工程,2020,45(1):92-97.
WANG Jin-xiao,CHENG Bin,YAN Xing-fei,et al.Structure Design and Analysis of All FRP Vehicle Bridge[J].Highway Engineering,2020,45(1):92-97.
[8]王 俊,刘伟庆,方 海,等.GFRP管-钢管双壁约束混凝土组合柱轴压性能与承载力实用计算方法研究[J].建筑结构,2012,42(2):133-138.
WANG Jun,LIU Wei-qing,FANG Hai,et al.Experiment and Capacity Calculation Theory Research of Hybrid GFRP-concrete-steel Double Skin Tubular columns Under Axial Compression[J].Building Structure,2012,42(2):133-138.
[9]黄 辉.钢-FRP-混凝土组合梁桥构件的受力性能与设计方法研究[D].南京:东南大学,2016.
HUANG Hui.Mechanical Performance and Design Method Study on the Specimens of Steel-FRP-concrete Composite Bridge[D].Nanjing:Southeast University,2016.
[10]黄海林,周福林,言 兴,等.GFRP型材-混凝土组合梁受弯性能试验[J].建筑科学与工程学报,2021,38(2):79-89.
HUANG Hai-lin,ZHOU Fu-lin,YAN Xing,et al.Experiment on Flexural Behavior of GFRP Profile-concrete Composite Beams[J].Journal of Architecture and Civil Engineering,2021,38(2):79-89.
[11]冯 鹏,齐玉军,叶列平,等.GFRP栏杆的受力性能及其结构安全性研究[J].玻璃钢/复合材料,2010(6):48-54.
FENG Peng,QI Yu-jun,YE Lie-ping,et al.Mechanical Performance and Safety Analysis of GFRP Railing System[J].Fiber Reinforced Plastics/Composites,2010(6):48-54.
[12]谢 旭,朱越峰.CFRP拉索设计对大跨度斜拉桥力学特性的影响[J].工程力学,2007,24(11):113-120.
XIE Xu,ZHU Yue-feng.Study on Behavior of Long-span CFRP Cable-stayed Bridges[J].Engineering Mechanics,2007,24(11):113-120.
[13]FENG P,YE L P,TENG J G.Large-span Woven Web Structure Made of Fiber-reinforced Polymer[J].Journal of Composites for Construction,2007,11(2):110-119.
[14]孙 丽,杨泽宇,居理宏,等.GFRP筋混凝土柱海水环境受压性能[J].建筑科学与工程学报,2018,35(5):188-193.
SUN Li,YANG Ze-yu,JU Li-hong,et al.Compression Performance of GFRP Reinforced Concrete Columns Under Seawater Environment[J].Journal of Architecture and Civil Engineering,2018,35(5):188-193.
[15]沈观林,胡更开,刘 彬.复合材料力学[M].2版.北京:清华大学出版社,2013.
SHEN Guan-lin,HU Geng-kai,LIU Bin.Mechanics of Composite Materials[M].2nd ed.Beijing:Tsinghua University Press,2013.
[16]纤维增强塑料拉伸性能试验方法: GB/T 1447—2005[S].北京:中国标准出版社,2005.
Fiber-reinforced Plastics Composites — Determination of Tensile Properties:GB/T 1447—2005[S].Beijing:Standards Press of China,2005.
[17]纤维增强塑料压缩性能试验方法:GB/T 1448—2005[S].北京:中国标准出版社,2005.
Fiber-reinforced Plastics Composites — Determination of Compressive Properties:GB/T 1448—2005[S].Beijing:Standards Press of China,2005.
[18]陈思鹏.GFRP桁架桥的力学性能分析与试验研究[D].南京:东南大学,2017.
CHEN Si-peng.Experimental Study on Mechanical Properties of GFRP Pedestrian Truss Bridge[D].Nanjing:Southeast University,2017.
[19]周祝林,杨云娣.单向纤维复合材料的弹性常数研究[J].玻璃钢,1995(3):1-12.
ZHOU Zhu-lin,YANG Yun-di.Study on Elastic Constants of Unidirectional Fiber Composites[J].Glassfiber Reinforced Plastics,1995(3):1-12.
[20]王秉权,杨荫萍.单向纤维增强复合材料弹性常数的实验研究[J].复合材料学报,1986,3(2):82-89,111.
WANG Bing-quan,YANG Yin-ping.Experimental Determination of Elastic Constants for Unidirectional Composites[J].Acta Materiae Compositae Sinica,1986,3(2):82-89,111.
[21]王 彤,谢 旭,王 渊,等.桁腹式组合桁梁结构计算理论[J].浙江大学学报(工学版),2014,48(4):711-720,741.
WANG Tong,XIE Xu,WANG Yuan,et al.Analysis of Prestressed Composite Truss Girders with Steel Truss Webs[J].Journal of Zhejiang University(Engineering Science),2014,48(4):711-720,741.
[22]黄华琪,张建东,刘 钊.钢桁腹式混凝土组合箱梁桥的空间梁格模型[J].现代交通技术,2011,8(6):27-30,43.
HUANG Hua-qi,ZHANG Jian-dong,LIU Zhao.Spatial Grillage Model of Steel Truss-web and Concrete Composite Box-girder Bridge[J].Modern Transportation Technology,2011,8(6):27-30,43.
[23]周绪红,秦凤江,狄 谨,等.基于能量原理的板桁结合型加劲梁连续化分析方法[J].中国公路学报,2014,27(6):34-43.
ZHOU Xu-hong,QIN Feng-jiang,DI Jin,et al.Continuous Analysis Method for Deck-truss Composite Stiffening Girder Based on Energy Principle[J].China Journal of Highway and Transport,2014,27(6):34-43.
[24]崔子鑫,李海超,张艳萍,等.一种板桁结合型加劲梁竖向抗弯刚度的近似算法[J].国防交通工程与技术,2020,18(4):5-9,58.
CUI Zi-xin,LI Hai-chao,ZHANG Yan-ping,et al.An Approximate Calculation Method for the Vertical Bending Stiffness of a Deck-truss Composite Stiffener[J].Traffic Engineering and Technology for National Defence,2020,18(4):5-9,58.
[25]宛青云.组合桁腹梁桥桁-箱等效理论研究[D].镇江:江苏科技大学,2019.
WAN Qing-yun.Study on Truss-box Equivalence Theory of Composite Truss Bridge with Steel Truss Webs[D].Zhenjiang:Jiangsu University of Science and Technology,2019.
[26]屈 鹏.纤维/树脂复合材料多尺度结构对力学性能的影响[D].济南:山东大学,2012.
QU Peng.Influence of Multi-scale Structure of Fiber Reinforced Resin Matrix Composites on Mechanical Properties[D].Jinan:Shandong University,2012.

Memo

Memo:
-
Last Update: 2022-03-20