|Table of Contents|

Acoustic Emission Characteristics of Rubber Concrete in Axial Tension Process(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2022年02期
Page:
78-86
Research Field:
结构工程
Publishing date:

Info

Title:
Acoustic Emission Characteristics of Rubber Concrete in Axial Tension Process
Author(s):
BU Jing-wu XU Hui-ying QIANG Yu-jie ZHOU Xuan BAI Wen-jie XU Gong-huan
(College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu, China)
Keywords:
rubber concrete rubber content uniaxial tensile test fracture energy acoustic emission
PACS:
TU528
DOI:
10.19815/j.jace.2021.06061
Abstract:
In order to study the influence of rubber content on the fracture performance of concrete under monotonic force, the uniaxial tensile tests of notched concrete prisms with different volume rubber contents(0%,5%,10%,15%,20%)were carried out. Acoustic emission technology was used to monitor the failure process of rubber concrete. Based on the test results, the curve of stress-crack opening displacement, fracture energy and acoustic emission characteristic parameters were analyzed. The results show that with the increase of rubber content, the instability load of concrete decreases, and the peak crack opening displacement increases. The fracture energy of rubber concrete is greater than that of reference concrete, and reaches the maximum value when the rubber content is 15%. The curves of acoustic emission accumulate counts and hits can divide the concrete failure process into three stages. With the increase of rubber content, the acoustic emission activity decreases, and the peak frequency changes from high frequency to low frequency. The acoustic emission b value can well reflect the failure form of the concrete specimen. The failure process of concrete specimen can be divided into two stages. During the failure process of the specimen, the b value shows a downward trend. As the rubber content increases, the b value increases. During the main crack formation stage, the difference between the maximum and minimum values of b value is reduced. The strength reduction rate is high with the rubber content less than 20%, while the strength reduction rate is lower when it exceeds 20%.

References:

[1] 庞澍华.我国轮胎循环利用行业砥砺前行[J].中国轮胎资源综合利用,2019(10):10-15.
PANG Shu-hua.China's Tire Recycling Industry Forge Ahead:Review of the 70th Anniversary Celebration of National Day[J].China Tire Resources Recycling,2019(10):10-15.
[2]赵江霞,高越青,梁超锋,等.橡胶混凝土动态力学性能研究进展[J].混凝土,2020(8):37-40.
ZHAO Jiang-xia,GAO Yue-qing,LIANG Chao-feng,et al.Review on the Dynamic Mechanical Properties of Rubber Concrete[J].Concrete,2020(8):37-40.
[3]曹国瑞,王 娟,卿龙邦,等.橡胶混凝土断裂性能试验研究[J].土木建筑与环境工程,2018,40(6):91-97.
CAO Guo-rui,WANG Juan,QING Long-bang,et al.Experimental Study on the Fracture Characteristics of Crumb Rubber Concrete[J].Journal of Civil,Architectural & Environmental Engineering,2018,40(6):91-97.
[4]HUANG X,PANG J Y,LIU G C,et al.The Influence of Equal Amplitude High Stress Repeated Loading on the Mechanical and Deformation Characteristics of Rubber Concrete[J].Construction and Building Materials,2021,266:121135.
[5]郝贠洪,樊 磊,韩 燕,等.冲击荷载作用下橡胶混凝土的损伤研究[J].振动与冲击,2019,38(17):73-80.
HAO Yun-hong,FAN Lei,HAN Yan,et al.Damage of Rubber Concrete Under Impact Loads[J].Journal of Vibration and Shock,2019,38(17):73-80.
[6]郭 琦,崔胜超,仵 晗.橡胶混凝土冻融损伤分析[J].重庆交通大学学报(自然科学版),2018,37(7):40-45.
GUO Qi,CUI Sheng-chao,WU Han.Analysis of Damage of Rubber Concrete in Freezing-thawing Circumstance[J].Journal of Chongqing Jiaotong University(Natural Science),2018,37(7):40-45.
[7]李小慧.纤维橡胶混凝土基本力学及耐久性能研究[J].建筑科学,2016,32(7):118-122,137.
LI Xiao-hui.Research on Mechanical Properties and Durability of Fiber-rubber Concrete[J].Building Science,2016,32(7):118-122,137.
[8]周 航,陈爱玖,韩小燕,等.正交法分析玄武岩纤维橡胶再生混凝土的基本性能[J].混凝土,2019(11):74-77,82.
ZHOU Hang,CHEN Ai-jiu,HAN Xiao-yan,et al.Research on the Basic Properties of Rubber Recycled Concrete with Basalt Fiber by Orthogonal Test[J].Concrete,2019(11):74-77,82.
[9]谢建和,李自坚,孙明炜.硅粉对纤维橡胶再生混凝土抗压性能影响试验[J].建筑科学与工程学报,2016,33(3):72-77.
XIE Jian-he,LI Zi-jian,SUN Ming-wei.Experiment About Influence of Silica Fume on Compressive Performance of Fiber Reinforced Rubber Recycled Concrete[J].Journal of Architecture and Civil Engineering,2016,33(3):72-77.
[10]袁 群,冯凌云,曹宏亮,等.橡胶混凝土的应力-应变曲线试验[J].建筑科学与工程学报,2013,30(3):96-100.
YUAN Qun,FENG Ling-yun,CAO Hong-liang,et al.Experiment on Stress-strain Curve of Rubber Concrete[J].Journal of Architecture and Civil Engineering,2013,30(3):96-100.
[11]葛文慧.废弃橡胶混凝土的力学性能和断裂韧性及抗冻性能[J].合成橡胶工业,2019,42(6):474-478.
GE Wen-hui.Mechanical Properties,Fracture Toughness and Frost Resistance of Waste Rubber Concrete[J].China Synthetic Rubber Industry,2019,42(6):474-478.
[12]胡艳丽,高培伟,李富荣,等.不同取代率的橡胶混凝土力学性能试验研究[J].建筑材料学报,2020,23(1):85-92.
HU Yan-li,GAO Pei-wei,LI Fu-rong,et al.Experimental Study on Mechanical Properties of Rubber Concrete with Different Substitution Rates[J].Journal of Building Materials,2020,23(1):85-92.
[13]胡钰泉,胡少伟,黄逸群,等.不同张口位移速率下带裂缝混凝土轴拉试验研究[J].振动与冲击,2019,38(2):179-183,191.
HU Yu-quan,HU Shao-wei,HUANG Yi-qun,et al.Axial Tension Tests of Cracked Concrete Under Different Opening Displacement Rates[J].Journal of Vibration and Shock,2019,38(2):179-183,191.
[14]范向前,胡少伟,陆 俊,等.不同初始静载混凝土轴向拉伸试验研究[J].振动与冲击,2017,36(2):83-88.
FAN Xiang-qian,HU Shao-wei,LU Jun,et al.Effects of Initial Static Loads on the Tensile Strength of Concrete[J].Journal of Vibration and Shock,2017,36(2):83-88.
[15]范向前,刘决丁,胡少伟,等.中央带裂缝混凝土循环拉伸断裂试验Felicity效应[J].复合材料学报,2019,36(12):2968-2974.
FAN Xiang-qian,LIU Jue-ding,HU Shao-wei,et al.Cyclic Tensile Fracture Test of Concrete with Central Crack and Felicity Effect[J].Acta Materiae Compositae Sinica,2019,36(12):2968-2974.
[16]HAN Q H,YANG G,XU J,et al.Acoustic Emission Data Analyses Based on Crumb Rubber Concrete Beam Bending tests[J].Engineering Fracture Mechanics,2019,210:189-202.
[17]林 峰,李庶林,薛云亮,等.混凝土受压过程中声发射数的灰色模型研究[J].建筑科学与工程学报,2008,25(3):42-46.
LIN Feng,LI Shu-lin,XUE Yun-liang,et al.Study of Number of Acoustic Emission with Gray Model in Compression Process of Concrete[J].Journal of Architecture and Civil Engineering,2008,25(3):42-46.
[18]李建涛,于 江,秦拥军,等.含不同初始缺陷混凝土单轴压缩条件下声发射特性试验研究[J].混凝土,2020(1):7-10,14.
LI Jian-tao,YU Jiang,QIN Yong-jun,et al.Experimental Study on Acoustic Emission Characteristics of Concrete Materials with Different Initial Defects Under Uniaxial Compression[J].Concrete,2020(1):7-10,14.
[19]于 江,袁 飞,秦拥军.不同骨料粒径混凝土声发射特性分析[J].三峡大学学报(自然科学版),2020,42(5):61-66,94.
YU Jiang,YUAN Fei,QIN Yong-jun.Analysis of Acoustic Emission Characteristics of Concrete with Different Aggregate Size[J].Journal of China Three Gorges University(Natural Sciences),2020,42(5):61-66,94.
[20]GUO Y Z,CHEN X D,YANG H Q,et al.Experimental Study on Direct Tension Behavior of Concrete Through Combined Digital Image Correlation and Acoustic Emission Techniques[J].Structural Concrete,2019,20(6):2042-2055.
[21]吴胜兴,王 岩,沈德建.混凝土及其组成材料轴拉损伤过程声发射特性试验研究[J].土木工程学报,2009,42(7):21-27.
WU Sheng-xing,WANG Yan,SHEN De-jian.Experimental Study on Acoustic Emission Characteristics of the Damage Process of Concrete and Its Components Under Uniaxial Tension[J].China Civil Engineering Journal,2009,42(7):21-27.
[22]DEL VISO J R,CARMONA J R,RUIZ G.Shape and Size Effects on the Compressive Strength of High-strength Concrete[J].Cement and Concrete Research,2008,38(3):386-395.
[23]HORDIJK D A.Local Approach to Fatigue of Concrete[D].Delft:Delft University of Technology,1991.
[24]ABOUHUSSIEN A A,HASSAN A A A.Classification of Damage in Self-consolidating Rubberized Concrete Using Acoustic Emission Intensity Analysis[J].Ultrasonics,2020,100:105999.
[25]FENG W H,LIU F,YANG F,et al.Compressive Behaviour and Fragment Size Distribution Model for Failure Mode Prediction of Rubber Concrete Under Impact Loads[J].Construction and Building Materials,2021,273:121767.
[26]ZHANG J H,CHEN C L,LI X J,et al.Dynamic Mechanical Properties of Self-compacting Rubberized Concrete Under High Strain Rates[J].Journal of Materials in Civil Engineering,2021,33(2):04020458.
[27]RIDGLEY K E,ABOUHUSSIEN A A,HASSAN A A A,et al.Evaluation of Abrasion Resistance of Self-consolidating Rubberized Concrete by Acoustic Emission Analysis[J].Journal of Materials in Civil Engineering,2018,30(8):04018196.
[28]MING P,LU J,CAI X,et al.Analysis of the Crack Evolution Process in Crumb Rubber Concrete Based on Acoustic Emission Technology[J].KSCE Journal of Civil Engineering,2020,24(7):2088-2098.
[29]HUANG X,PANG J Y,LIU G C,et al.The Influence of Equal Amplitude High Stress Repeated Loading on the Mechanical and Deformation Characteristics of Rubber Concrete[J].Construction and Building Materials,2021,266:121135.
[30]薛 刚,孙立所,刘佳香,等.橡胶混凝土弯曲疲劳性能研究[J].长江科学院院报,2021,38(11):149-156.
XUE Gang,SUN Li-suo,LIU Jia-xiang,et al.Flexural Fatigue Performance of Rubber Concrete[J].Journal of Yangtze River Scientific Research Institute,2021,38(11):149-156.
[31]陈徐东,黄业博,陈 晨.橡胶自密实混凝土断裂性能及声发射特征[J].建筑材料学报,2021,24(4):758-765.
CHEN Xu-dong,HUANG Ye-bo,CHEN Chen.Fracture Properties and Acoustic Emission Characteristics of Rubber Self-compacting Concrete[J].Journal of Building Materials,2021,24(4):758-765.

Memo

Memo:
-
Last Update: 2022-03-20