|Table of Contents|

Test Research on Soil Compaction Effect and Ultimate Bearing Capacity of Bidirectional Soil Displacement Screw Piles in Collapsible Loess Site(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2022年05期
Page:
241-250
Research Field:
基础工程
Publishing date:

Info

Title:
Test Research on Soil Compaction Effect and Ultimate Bearing Capacity of Bidirectional Soil Displacement Screw Piles in Collapsible Loess Site
Author(s):
MA Tian-zhong1 SUN Chen-dong1 GAO Yu-guang2 WANG Zheng-zhen1 SU Tian-tao1 GAO Hong1
(1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; 2. Gansu Civil Engineering Research Institute Co., Ltd., Lanzhou 730050, Gansu, China)
Keywords:
bidirectional soil displacement screw pile collapsible loess compaction effect ultimate bearing capacity in-situ test
PACS:
TU473
DOI:
10.19815/j.jace.2022.06016
Abstract:
In order to deeply study the compaction range and compaction effect of the soil displacement screw pile on the collapsible loess around the pile before and after the hole forming in the large thickness self weight collapsible loess area, and to reveal the failure characteristics and the ultimate bearing capacity of the bidirectional soil displacement screw pile, the on-site bidirectional spiral soil compaction hole forming test and static load test were carried out in a high-order leveling site in Yuzhong of Lanzhou. Based on the correction coefficient of the ultimate resistance of the pile side of the bidirectional soil displacement screw pile in the local codes and standards, and the field measured data of typical strata in Lanzhou, the standard value of pile end ultimate resistance of different soil types in Gansu province was proposed. The results show that the surface heave and radial lateral displacement of the soil around the pile decrease with the distance from the hole forming center. The radial influence range is 3D(D is pile diameter)pile center distance, and the vertical influence range is 25 m below the surface. The physical and mechanical indexes of the soil around the pile are significantly improved in the range of 2D pile center distance. The smaller the pile center distance is, the more obvious influence of soil compaction on the physical properties of the soil around the pile is. Under the same working conditions, the ultimate bearing capacity of single pile of bidirectional soil displacement screw pile is 25% higher than that of long spiral cast-in-place pile, and they all represent the characteristics of slow-moving strength failure.

References:

[1] COCK F,IMBO R.Atlas Screw Pile:A Vibration-free,Full Displacement,Cast-in-place Pile[J].Transportation Research Record,1994(1447):49-62.
[2]FRANGOULIDES A C,CYPRUS.Model Testing of Continuous Helical Displacement Piles[J].Ground Engineering,2000,33(12):34-37.
[3]MANGUSHEV R A,KONYUSHKOV V V,D'YAKONOV I P.Analysis of Practical Application of Screw-in Cast Piles[J].Soil Mechanics and Foundation Engineering,2014,51(5):227-233.
[4]URBANSKI A,TRUTY A,RICHTER M.Stability of Drilling Rigs Moving on a Weak Subsoil.Theoretical Formulation and Selected Case Studies[J].Engineering Structures,2019,184:524-534.
[5]米海珍,杨 鹏.挤密桩处理湿陷性黄土地基的现场试验研究[J].岩土力学,2012,33(7):1951-1956,1964.
MI Hai-zhen,YANG Peng.A Field Experimental Study of Compaction Piles in Collapsible Loess Foundation[J].Rock and Soil Mechanics,2012,33(7):1951-1956,1964.
[6]米周林,高明哲,邓 萌.水泥土挤密桩在湿陷性黄土地区高层建筑中的应用[J].建筑结构,2017,47(19):82-85.
MI Zhou-lin,GAO Ming-zhe,DENG Meng.Application of Compacted Soil-cement Piles in Tall Building Construction in Collapsible Loess Regions[J].Building Structure,2017,47(19):82-85.
[7]李金奎,吴 凯.挤密桩处理高填方湿陷性黄土地基的现场试验分析[J].广西大学学报(自然科学版),2018,43(1):197-204.
LI Jin-kui,WU Kai.A Field Experimental Analysis of Compaction Piles in High Embankment Collapsible Loess Foundation[J].Journal of Guangxi University(Natural Science Edition),2018,43(1):197-204.
[8]朱彦鹏,杜晓启,杨校辉,等.挤密桩处理大厚度自重湿陷性黄土地区综合管廊地基及其工后浸水试验研究[J].岩土力学,2019,40(8):2914-2924.
ZHU Yan-peng,DU Xiao-qi,YANG Xiao-hui,et al.Research on Utility Tunnel Foundation Treated by Compaction Piles and Post-work Immersion Test in Self-weight Collapsible Loess Area with Large Thickness[J].Rock and Soil Mechanics,2019,40(8):2914-2924.
[9]朱彦鹏,李亚胜,李京榜,等.挤密桩法处理自重湿陷性黄土地基的试验[J].兰州理工大学学报,2019,45(6):133-137.
ZHU Yan-peng,LI Ya-sheng,LI Jing-bang,et al.Experiment on Treatment of Self-weight Wet-collapsible Loess Foundation with Compaction Pile Method[J].Journal of Lanzhou University of Technology,2019,45(6):133-137.
[10]吉 任,徐欢乐.水泥土挤密桩处理含盐湿陷性黄土地基施工技术研究[J].公路,2020,65(6):118-121.
JI Ren,XU Huan-le.Study on Construction Technology of Cement Soil Compaction Pile for Treatment of Saline Collapsible Loess Foundation[J].Highway,2020,65(6):118-121.
[11]刘明军,许东宇,张 伟,等.素土挤密桩消除湿陷性黄土湿陷性研究[J].建筑结构,2021,51(增2):1640-1644.
LIU Ming-jun,XU Dong-yu,ZHANG Wei,et al.Study on Eliminating Collapsibility of Collapsible Loess by Plain Soil Compacted Pile[J].Building Structure,2021,51(S2):1640-1644.
[12]李志毅,刘 钟,赵琰飞,等.螺旋挤土桩竖向承载性能试验研究[J].工业建筑,2009,39(增1):785-787.
LI Zhi-yi,LIU Zhong,ZHAO Yan-fei,et al.Model Test on Vertical Bearing Capacity of the Soil Displacement Screw Pile[J].Industrial Construction,2009,39(S1):785-787.
[13]李志毅,刘 钟,赵琰飞,等.新型螺旋挤土灌注桩现场试验研究[J].岩石力学与工程学报,2011,30(2):411-417.
LI Zhi-yi,LIU Zhong,ZHAO Yan-fei,et al.Field Test Study of New-type Soil Displacement Screw Pile[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(2):411-417.
[14]刘 钟,杨 松,卢璟春,等.螺旋挤土灌注桩与长螺旋灌注桩承载力足尺试验研究[J].岩土工程学报,2010,32(增2):127-131.
LIU Zhong,YANG Song,LU Jing-chun,et al.Full Scale Field Load Tests on Bearing Capacity of SDS Pile and CFA Pile[J].Chinese Journal of Geotechnical Engineering,2010,32(S2):127-131.
[15]刘 钟,卢璟春,张 义,等.砂土中螺旋挤土灌注桩受力性状模型试验研究[J].岩石力学与工程学报,2011,30(3):616-624.
LIU Zhong,LU Jing-chun,ZHANG Yi,et al.Model Test Study of Load Deformation Behavior of Soil Displacement Screw Pile in Sand[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(3):616-624.
[16]张豫川,刘辰麟,卢连长,等.灌注桩的成孔型式对桩侧摩阻力影响的研究[J].太原理工大学学报,2016,47(1):36-40.
ZHANG Yu-chuan,LIU Chen-lin,LU Lian-chang,et al.Research on Influence of the Pore Forming Type on Pile Side Friction Resistance[J].Journal of Taiyuan University of Technology,2016,47(1):36-40.
[17]长螺旋钻孔压灌桩技术标准:JGJ/T 419—2018[S].北京:中国建筑工业出版社,2018.
Technical Standard for Continuous Flight Auger Pile:JGJ/T 419—2018[S].Beijing:China Architecture & Building Press,2018.
[18]双向螺旋挤土灌注桩技术规程:DB62/T 3171—2019[S].北京:中国建材工业出版社,2019.
Technical Specification for Bidirectional Soil Displacement Screw Pile:DB62/T 3171—2019[S].Beijing:China Building Materials Press,2019.
[19]双向螺旋挤土灌注桩技术规程:J12652—2014[S].郑州:河南科学技术出版社,2014.
Technical Specification for Bidirectional Soil Displacement Screw Pile:J12652—2014[S].Zhengzhou:Henan Science and Technology Press,2014.
[20]湿陷性黄土地区建筑标准:GB 50025—2018[S].北京:中国建筑工业出版社,2018.
Standard for Building Construction in Collapsible Loess Regions:GB 50025—2018[S].Beijing:China Architecture & Building Press,2018.
[21]建筑地基基础设计规范:GB 50007—2011[S].北京:中国建筑工业出版社,2011.
Code for Design of Building Foundation:GB 50007—2011[S].Beijing:China Architecture & Building Press,2011.

Memo

Memo:
-
Last Update: 2022-09-30