|Table of Contents|

Study on Construction Mechanical Behavior of Ultra-deep Diaphragm Wall in Gravel Stratum Based on Discrete-continuous Coupling Method(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2022年05期
Page:
251-261
Research Field:
基础工程
Publishing date:

Info

Title:
Study on Construction Mechanical Behavior of Ultra-deep Diaphragm Wall in Gravel Stratum Based on Discrete-continuous Coupling Method
Author(s):
SHEN Yu-sheng1 GAN Yu-hang1 ZI Xiao-yu2 DONG Jun3 MIN Peng1 ZHANG Yi-fei1 WANG Jin4
(1. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, Sichuan, China; 3. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China; 4. Urban Rail Transit Engineering Branch Co., Ltd. of CTCE Group, Hefei 230022, Anhui, China)
Keywords:
subway engineering construction mechanical behavior discrete-continuous coupling method diaphragm wall gravel stratum
PACS:
TU753
DOI:
10.19815/j.jace.2021.04093
Abstract:
Based on the Kunming Rail Transit Line 4 north railway station engineering(three-line transfer), the coupling algorithm of discrete element method(DEM)and finite difference method(FDM)was derived, and the mechanical behavior of the whole construction process of a single ultra-deep(70 m)diaphragm wall in gravel stratum was studied. The results show that the horizontal and vertical stresses of the stratum decrease in different degrees during the groove formation stage of ultra deep diaphragm wall, and the groove wall is unloaded and deforms into the groove. In the cohesive soil layer, soil arch is formed near the corners of the trough section, the stress in the area increases, and the soil arching effect of the gravel stratum is not obvious. The cumulative horizontal deformation of the groove wall during the groove formation stage from large to small is gravel stratum, underlying stratum and overlying soil. The maximum horizontal displacement is about 15.8 mm and the maximum ground settlement is about 9 mm. During the concrete pouring stage, the stratum stress rises to various degrees under the action of the concrete pressure squeezing. The groove wall squeezes and deforms toward outside, the ground uplifts and deforms, and gradually converge in the concrete hardening stage.The research results have been applied to the actual engineering and achieved good groove formation effect, which can provide certain reference for the design and construction of similar diaphragm walls.

References:

[1] 韩泽亮.软土地区超深基坑施工对周边环境的影响分析[J].山西建筑,2020,46(14):1-5.
HAN Ze-liang.Influence of Super Deep Foundation Pit Construction on Surrounding Environment in Soft Soil Area[J].Shanxi Architecture,2020,46(14):1-5.
[2]彭 斌,袁 杰,张小勇,等.圆砾地层深基坑地下连续墙变形特性分析[J].土木工程学报,2017,50(增1):65-69.
PENG Bin,YUAN Jie,ZHANG Xiao-yong,et al.Analysis on Deformation of Diaphragm Wall in Round Gravel Strata[J].China Civil Engineering Journal,2017,50(S1):65-69.
[3]李佳宇,张子新.圆砾层地铁车站深基坑变形特征三维数值分析[J].地下空间与工程学报,2012,8(1):71-76,110.
LI Jia-yu,ZHANG Zi-xin.3D Numerical Analysis of Deep Station Excavation Constructed in Round Gravel Strata[J].Chinese Journal of Underground Space and Engineering,2012,8(1):71-76,110.
[4]吴凤元,樊赟赟,梁 力,等.桩-钢支撑支护基坑颗粒流数值模拟分析[J].济南大学学报(自然科学版),2020,34(1):10-14.
WU Feng-yuan,FAN Yun-yun,LIANG Li,et al.Particle Flow Numerical Simulation Analysis of Pile-steel Tube Support Foundation Pit[J].Journal of University of Jinan(Science and Technology),2020,34(1):10-14.
[5]李 博,王贵和,吕高峰,等.导管法水下混凝土灌注厚度的颗粒流模拟[J].建筑科学与工程学报,2020,37(2):118-126.
LI Bo,WANG Gui-he,LYU Gao-feng,et al.Particle Flow Simulation of Underwater Concrete Filling Thickness by Tremie Method[J].Journal of Architecture and Civil Engineering,2020,37(2):118-126.
[6]周秋爽.基于三维离散-连续耦合方法的新建隧道下穿既有盾构隧道变形特性研究[D].北京:北京交通大学,2019.
ZHOU Qiu-shuang.Research on Deformation Characteristics of Existing Shield Tunnel with New Tunnel Construction Based on 3D Discrete-continuous Coupling Method[D].Beijing:Beijing Jiaotong University,2019.
[7]申志福,蒋明镜,郑 敏.离散元在刚性挡墙基坑开挖数值模拟中的应用[J].兰州大学学报(自然科学版),2011,47:162-168.
SHEN Zhi-fu,JIANG Ming-jing,ZHENG Min.Application of DEM Analyses for Simulation of Pit Excavation Retained with Rigid Wall[J].Journal of Lanzhou University(Natural Sciences),2011,47:162-168.
[8]周 健,李 飞,张 姣,等.复合土钉墙支护基坑颗粒流数值模拟研究[J].同济大学学报(自然科学版),2011,39(7):966-971.
ZHOU Jian,LI Fei,ZHANG Jiao,et al.Study of PFC Numerical Simulation of Soil Nailing Wall Support Excavation[J].Journal of Tongji University(Natural Science),2011,39(7):966-971.
[9]贾敏才,王 磊,周 健.基坑开挖变形的颗粒流数值模拟[J].同济大学学报(自然科学版),2009,37(5):612-617.
JIA Min-cai,WANG Lei,ZHOU Jian.Simulation of Soil Deformation Due to Pit Excavation with Particle Flow Code[J].Journal of Tongji University(Natural Science),2009,37(5):612-617.
[10]王 俊.土压平衡盾构掘进对上软下硬地层扰动研究[D].成都:西南交通大学,2017.
WANG Jun.Study on the Disturbance Induced by EPB Shield Tunnelling in Mixed Ground with Soft Sand Lying on Hard Rock[D].Chengdu:Southwest Jiaotong University,2017.
[11]王明年,曾正强,赵银亭,等.级配不良卵石深基坑地表及支护变形规律研究[J].铁道科学与工程学报,2019,16(3):646-653.
WANG Ming-nian,ZENG Zheng-qiang,ZHAO Yin-ting,et al.Study on Deformation Rules of Earth's Surface and Support Structure for Deep Foundation Pit in Bad Gradation Pebble Stratum[J].Journal of Railway Science and Engineering,2019,16(3):646-653.
[12]王 俊,何 川,李栋林,等.砂卵石地层地下水对盾构隧道影响的离散元流固耦合分析[J].隧道建设,2016,36(6):710-716.
WANG Jun,HE Chuan,LI Dong-lin,et al.Discrete Element Solid-fluid Coupling Analysis of Influence of Groundwater on Shield Tunnel in Sandy-cobble Strata[J].Tunnel Construction,2016,36(6):710-716.
[13]王振飞.北京砂卵石地层大直径泥水加压平衡盾构适应性研究[D].北京:北京交通大学,2014.
WANG Zhen-fei.Research on Suitability of Large-diameter Slurry Shield in Sand and Gravel Formations of Beijing[D].Beijing:Beijing Jiaotong University,2014.
[14]童建军.成都地区卵石地层深基坑设计关键技术研究[D].成都:西南交通大学,2014.
TONG Jian-jun.Research on the Key Design Technologies of the Deep Foundation Pit in Cobble Stratum in Chengdu Area[D].Chengdu:Southwest Jiaotong University,2014.
[15]魏龙海.基于颗粒离散元法的卵石层中成都地铁施工力学研究[D].成都:西南交通大学,2009.
WEI Long-hai.Study on the Mechanical Behavior of Subway Construction in Cobble Stratum Based on Granular Discrete Element Method[D].Chengdu:Southwest Jiaotong University,2009.
[16]Itasca Consulting Group Inc..FLAC3D Version 6.0 Documentation[M].Mexico:ICG,2017.
[17]LINGS M L,NG C W W,NASH D F T,et al.The Lateral Pressure of Wet Concrete in Diaphragm Wall Panels Cast Under Bentonite[J].Proceedings of the Institution of Civil Engineers-geotechnical Engineering,1994,107(3):163-172.

Memo

Memo:
-
Last Update: 2022-09-30