[1] 白国良,刘瀚卿,朱可凡,等.陕北矿区不同矿源煤矸石混凝土抗压强度试验研究[J].土木工程学报,2023,56(4):30-40.
BAI Guoliang,LIU Hanqing,ZHU Kefan,et al.Experimental study on compressive strength of coal gangue concrete from different ore sources in Northern Shaanxi mining area[J].China Civil Engineering Journal,2023,56(4):30-40.
[2]NASER A H,BADR A H,HENEDY S N,et al.Application of multivariate adaptive regression splines(MARS)approach in prediction of compressive strength of eco-friendly concrete[J].Case Studies in Construction Materials,2022,17:e01262.
[3]薛国斌,胡安龙,魏 勇,等.基于代价敏感系数的混凝土抗压强度预测[J].西安理工大学学报,2022,38(4):588-593.
XUE Guobin,HU Anlong,WEI Yong,et al.Compressive strength prediction of concrete based on the cost-sensitive coefficients[J].Journal of Xi'an University of Technology,2022,38(4):588-593.
[4]陈洪根,龙蔚莹,李 昕,等.基于BP神经网络的粉煤灰混凝土抗压强度预测研究[J].建筑结构,2021,51(增2):1041-1045.
CHEN Honggen,LONG Weiying,LI Xin,et al.Prediction of compressive strength of fly ash concrete based on BP neural network[J].Building Structure,2021,51(S2):1041-1045.
[5]林 军,杨 斌,陈雁萍.基于FLR和ANFIS方法预测混凝土抗压强度研究[J].混凝土,2022(5):11-15.
LIN Jun,YANG Bin,CHEN Yanping.Comparison study of predicting concrete compressive strength by FLR and ANFIS method[J].Concrete,2022(5):11-15.
[6]吴贤国,刘鹏程,陈虹宇,等.基于随机森林的高性能混凝土抗压强度预测[J].混凝土,2022(1):17-20,24.
WU Xianguo,LIU Pengcheng,CHEN Hongyu,et al.Characteristic screening and prediction of high-performance concrete compressive strength based on random forest method[J].Concrete,2022(1):17-20,24.
[7]ZENG Z Y,ZHU Z Y,YAO W,et al.Accurate prediction of concrete compressive strength based on explainable features using deep learning[J].Construction and Building Materials,2022,329:127082.
[8]ZHU L H,ZHAO C,DAI J.Prediction of compressive strength of recycled aggregate concrete based on gray correlation analysis[J].Construction and Building Materials,2021,273:121750.
[9]陈 庆,马 瑞,蒋正武,等.基于GA-BP神经网络的UHPC抗压强度预测与配合比设计[J].建筑材料学报,2020,23(1):176-183,191.
CHEN Qing,MA Rui,JIANG Zhengwu,et al.Compressive strength prediction and mix proportion design of UHPC based on GA-BP neural network[J].Journal of Building Materials,2020,23(1):176-183,191.
[10]WANG R L,DAI Y M,HAN C C,et al.Application of DPO-BP in strength prediction of concrete[C]//ITOEC.Proceedings of 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference.Chongqing:IEEE,2017:1003-1006.
[11]焦楚杰,谭思琪,崔力仕,等.基于神经网络的植生型多孔混凝土抗压强度预测模型[J].混凝土,2022(1):7-10,16.
JIAO Chujie,TAN Siqi,CUI Lishi,et al.Prediction model of compressive strength of plant porous concrete based on neural network[J].Concrete,2022(1):7-10,16.
[12]TU J S,LIU Y Z,ZHOU M,et al.Prediction and analysis of compressive strength of recycled aggregate thermal insulation concrete based on GA-BP optimization network[J].Journal of Engineering,Design and Technology,2021,19(2):412-422.
[13]FENG D C,LIU Z T,WANG X D,et al.Machine learning-based compressive strength prediction for concrete:an adaptive boosting approach[J].Construction and Building Materials,2020,230:117000.
[14]AL-JAMIMI H A,AL-KUTTI W A,ALWAHAISHI S,et al.Prediction of compressive strength in plain and blended cement concretes using a hybrid artificial intelligence model[J].Case Studies in Construction Materials,2022,17:e01238.
[15]MA S X,SHI X X,YU C L,et al.Research on improved BP neural network gangue powder concrete compressive strength prediction model[C]//ITAIC.Proceedings of 2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference.Chongqing:IEEE,2020:419-423.
[16]许开成,毕丽苹,陈梦成.基于SPSS回归分析的锂渣混凝土抗压强度预测模型[J].建筑科学与工程学报,2017,34(1):15-24.
XU Kaicheng,BI Liping,CHEN Mengcheng.Prediction model of compressive strength of lithium slag concrete based on SPSS regression analysis[J].Journal of Architecture and Civil Engineering,2017,34(1):15-24.
[17]JOVIC S,BABIC L,MISKOVIC A,et al.Ranking of the most influential parameters for compressive strength of no-slump concrete prediction by neuro-fuzzy logic[J].Structural Concrete,2021,22(2):1-6.
[18]CUI X N,WANG Q C,ZHANG R L,et al.Machine learning prediction of concrete compressive strength with data enhancement[J].Journal of Intelligent & Fuzzy Systems,2021,41(6):7219-7228.