|Table of Contents|

Study on axial compression ratio limit of concrete-filled steel tubular composite column with T-shaped steel flange(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2024年03期
Page:
76-85
Research Field:
建筑结构
Publishing date:

Info

Title:
Study on axial compression ratio limit of concrete-filled steel tubular composite column with T-shaped steel flange
Author(s):
GAO Liang1 WANG Peng2 ZHANG Peng2
(1. School of Management Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; 2. College of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi, China)
Keywords:
composite column ductility performance numerical simulation theoretical calculation axial compression ratio limit
PACS:
TU398
DOI:
10.19815/j.jace.2022.05049
Abstract:
In order to fully utilize the deformation performance of concrete-filled steel tubular composite column with T-shaped steel flanges(T-CFST column)and ensure that the columns can meet the ductility requirements under seismic action, the ductility and axial compression ratio limits of the T-CFST columns were investigated by theoretical derivation and numerical simulation. Based on the critical failure state between large eccentricity failure and small eccentricity failure, the formulas for calculating standard axial compression ratio and design axial compression ratio of T-CFST column was proposed. Based on the ABAQUS software, a refined finite element model of the T-CFST column was established. After verifying the accuracy of the finite element model, the influence of various influencing factors on the ductility of composite columns under high axial compression ratio was studied. The design axial compression ratio limits of composite columns under various steel ratios, steel strength and concrete strength were suggested. The results show that the ductility of T-CFST column increases with the decrease of concrete strength, the decrease of section steel ratio, the increase of steel strength and the increase of volume hoop ratio. Even at a large axial compression ratio, the ductility of the column is still good, and the limit of the axial compression ratio of the T-CFST column is allowed to be increased on the basis of calculation.

References:

[1] 混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
Code for design of concrete structures:GB 50010—2010[S].Beijing:China Architecture & Building Press,2011.
[2]组合结构设计规范:JGJ 138—2016[S].北京:中国建筑工业出版社,2016.
Code for design of composite structures:JGJ 138—2016[S].Beijing:China Architecture & Building Press,2016.
[3]钢骨混凝土结构技术规程:YB 9082—2006[S].北京:冶金工业出版社,2007.
Technical specification of steel-reinforced concrete structures:YB 9082—2006[S].Beijing:Metallurgical Industry Press,2007.
[4]建筑抗震设计规范:GB 50011—2001[S].北京:中国建筑工业出版社,2004.
Code for seismic design of buildings:GB 50011—2001[S].Beijing:China Architecture & Building Press,2004.
[5]ZHANG Y,QIAN J R,JI X D,et al.Tests and numerical simulation on short composite-sectioned concrete filled steel tubular columns subjected to axial compressive loading[J].Advanced Materials Research,2011,374-377:2265-2270.
[6]JI X D,KANG H Z,CHEN X C,et al.Seismic behavior and strength capacity of steel tube-reinforced concrete composite columns[J].Earthquake Engineering & Structural Dynamics,2014,43(4):487-505.
[7]QIAN W W,LI W,HAN L H,et al.Analytical behavior of concrete-encased CFST columns under cyclic lateral loading[J].Journal of Constructional Steel Research,2016,120:206-220.
[8]CAI J M,PAN J L,TAN J W,et al.Behavior of ECC-encased CFST columns under eccentric loading[J].Journal of Building Engineering,2020,30:101188.
[9]徐亚丰,姜桂兰,向常艳,等.轴心受压下钢骨-钢管混凝土组合短柱承载力研究[J].沈阳建筑大学学报(自然科学版),2005,21(6):640-643.
XU Yafeng,JIANG Guilan,XIANG Changyan,et al.Capacity study under axial load of circular steel tube compile short column filled with steel reinforced concrete[J].Journal of Shenyang Jianzhu University(Natural Science),2005,21(6):640-643.
[10]代 岩,赵均海,张常光.CFRP和角钢复合加固钢管混凝土叠合柱轴心受压承载力分析[J].建筑结构,2018,48(17):96-103.
DAI Yan,ZHAO Junhai,ZHANG Changguang.Analysis of axial compression bearing capacity of CFRP and angle steel composite reinforced concrete-filled steel tubular columns[J].Building Structure,2018,48(17):96-103.
[11]杨 勇,于云龙,王欣林,等.预应力钢带约束钢管混凝土叠合柱抗震性能试验研究[J].工业建筑,2015,45(3):11-15.
YANG Yong,YU Yunlong,WANG Xinlin,et al.Experimental study of seismic performance of composite columns with core steel tube and confined by prestressed steel strips[J].Industrial Construction,2015,45(3):11-15.
[12]CAI J M,PAN J L,LU C.Mechanical behavior of ECC-encased CFST columns subjected to eccentric loading[J].Engineering Structures,2018,162:22-28.
[13]王 朋,李龙堂,史庆轩,等.带T形钢的内置钢管混凝土组合柱轴压性能研究[J].建筑结构学报,2023,44(2):37-49.
WANG Peng,LI Longtang,SHI Qingxuan,et al.Research on axial compression performance of steel tube with T-shaped steel reinforced concrete column[J].Journal of Building Structures,2023,44(2):37-49.
[14]丁耀宗.新型型钢-混凝土组合柱抗震性能研究[D].西安:西安建筑科技大学,2021.
DING Yaozong.Study on seismic performance of new type steel reinforced concrete columns[D].Xi'an:Xi'an University of Architecture and Technology,2021.
[15]韩林海.钢管混凝土结构:理论与实践[M].3版.北京:科学出版社,2016.
HAN Linhai.Concrete filled steel tubular structures:theory and practice[M].3rd ed.Beijing:Science Press,2016.
[16]ZHAO X Z,WEN F P,CHAN T M,et al.Theoretical stress-strain model for concrete in steel-reinforced concrete columns[J].Journal of Structural Engineering,2019,145(4):04019009.
[17]贾金青,孙洪梅,李大永.钢骨高强混凝土短柱轴压力系数限值[J].大连理工大学学报,2002,42(2):218-222.
JIA Jinqing,SUN Hongmei,LI Dayong.Limited values on axial compression ratio of steel reinforced high-strength concrete short columns[J].Journal of Dalian University of Technology,2002,42(2):218-222.
[18]Seismic evaluation and retrofit of existing buildings:ASCE/SEI 41-23[S].Reston:American Society of Civil Engineers,2023.
[19]张树琛,杨 勇,薛亦聪,等.部分预制装配型钢混凝土短柱抗震性能试验研究[J].工程力学,2020,37(10):179-191.
ZHANG Shuchen,YANG Yong,XUE Yicong,et al.Research on seismic performance of partially precast steel reinforced concrete short columns[J].Engineering Mechanics,2020,37(10):179-191.

Memo

Memo:
-
Last Update: 2024-05-20