|Table of Contents|

Study on wind vibration coefficient of single-layer cable-suspended photovoltaic support(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2024年05期
Page:
63-70
Research Field:
建筑结构
Publishing date:

Info

Title:
Study on wind vibration coefficient of single-layer cable-suspended photovoltaic support
Author(s):
LI Jiawei1 HE Yongjun1 QUAN Yong2
(1. School of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. China Machinery International Engineering Design & Research Institute Co., Ltd., Changsha 410021, Hunan, China)
Keywords:
photovoltaic support single-layer cable suspended wind vibration response wind vibration coefficient
PACS:
TU399
DOI:
10.19815/j.jace.2022.06088
Abstract:
The single-layer cable-suspended photovoltaic structure is wind sensitive structure. However, there is no provision for its wind vibration coefficient in the current Chinese code. Therefore, the value of wind vibration coefficient was studied. AR method was used to simulate wind load and dynamic time history analysis was carried out. According to the characteristics of nonlinear structure, the calculation method of wind vibration coefficient was proposed and the calculation program was compiled. The basic distribution law of wind vibration coefficient at different nodes was analyzed. The variation law of wind vibration coefficient with structural parameters was discussed. The static equivalent results of wind vibration coefficient at different control points were compared and the range of wind vibration coefficient of internal force and vertical displacement was given. The results show that the internal force wind vibration coefficient of different nodes of the cable is more concentrated than the displacement wind vibration coefficient. The vertical displacement wind vibration coefficient of each node is greater than the horizontal displacement wind vibration coefficient. The wind vibration coefficient is less affected by the photovoltaic plate angle, and the wind vibration coefficient is almost unchanged from 0° to 15°. The vertical displacement wind vibration coefficient is greatly affected by the steel frame spacing, and its overall trend increases with the increase of the steel frame spacing, but its value has a certain fluctuation. The increase of initial pre-tension of cable will greatly reduce the vertical displacement wind vibration coefficient. Taking the maximum point of wind vibration response as the control point can ensure the safety of the structure and the static equivalent effect of wind vibration coefficient is better. The values of internal force wind vibration coefficient and vertical displacement wind vibration coefficient are 2.0-2.3 and 3.2-5.5.

References:

[1] 周孝信,陈树勇,鲁宗相,等.能源转型中我国新一代电力系统的技术特征[J].中国电机工程学报,2018,38(7):1893-1904,2205.
ZHOU Xiaoxin,CHEN Shuyong,LU Zongxiang,et al.Technology features of the new generation power system in China[J].Proceedings of the CSEE,2018,38(7):1893-1904,2205.
[2]赵 枫.在新形势下我国光伏产业持续发展的思考[J].可再生能源,2017,35(8):1181-1187.
ZHAO Feng.Reflection on the sustainable development of photovoltaic industry in China under the new situation[J].Renewable Energy Resources,2017,35(8):1181-1187.
[3]BAUMGARTNER F P,BUCHEL A,BARTHOLET R.Solar wings:a new lightweight PV tracking system[C]//EUPVSEC.Proceedings of the 23th European Photovoltaic Solar Energy Conference.Valencia:EUPVSEC,2008:1-6.
[4]BAUMGARTNER F P,BUCHEL A,BARTHOLET R.Solar ski lift PV carport and other solar wings cable based solutions[C]//EUPVSEC.Proceedings of the 27th European Photovoltaic Solar Energy Conference.Frankfurt:EUPVSEC,2015:1-5.
[5]唐俊福,林建平,霍静思.柔性光伏支架结构特性分析及其优化设计[J].华侨大学学报(自然科学版),2019,40(3):331-337.
TANG Junfu,LIN Jianping,HUO Jingsi.Structural characteristic analysis and optimal design of flexible photovoltaic support structure[J].Journal of Huaqiao University(Natural Science),2019,40(3):331-337.
[6]周 杰,杜金娥,徐佳骆,等.山区地形下光伏柔性支架预应力索设计分析[C]//中冶建筑研究总院有限公司.2020年工业建筑学术交流会论文集(下册).北京:《工业建筑》杂志社,2020:375-379.
ZHOU Jie,DU Jine,XU Jialuo.Design and analysis of prestressed cables of photovoltaic[C]//MCC Construction Research Institute Co.,Ltd.Proceedings of 2020 Industrial Construction Academic Exchange Conference(Last Volume).Beijing:Magazine Press of Industrial Construction,2020:375-379.
[7]HE X H,DING H,JING H Q,et al.Wind-induced vibration and its suppression of photovoltaic modules supported by suspension cables[J].Journal of Wind Engineering and Industrial Aerodynamics,2020,206:104275.
[8]DING H,HE X H,JING H Q,et al.Wind induced vibration of photovoltaic-panels supported by suspension cables[C]//ICWE.Proceedings of the 15th International Conference on Wind Engineering(ICWE15).Beijing:ICWE,2019:571-572.
[9]HE X H,DING H,JING H Q,et al.Mechanical characteristics of a new type of cable-supported photovoltaic module system[J].Solar Energy,2021,226:408-420.
[10]KIM Y C,SHAN W,YANG Q S,et al.Effects of panel shapes on the response of solar wing structure[C]//APCWE.Proceedings of the 9th Asia-Pacific Conference on Wind Engineering.Auckland:APCWE,2017:1-4.
[11]KIM Y C,TAMURA Y,YOSHIDA A,et al.Experimental investigation of aerodynamic vibrations of solar wing system[J].Advances in Structural Engineering,2018,21(15):2217-2226.
[12]KIM Y C,SHAN W,YANG Q S,et al.Effect of panel shapes on wind-induced vibrations of solar wing system under various wind environments[J].Journal of Structural Engineering,2020,146(6):04020104.
[13]王泽国,赵菲菲,吉春明,等.多排大跨度柔性光伏支架的振动控制研究[J].武汉大学学报(工学版),2020,53(增1):29-34.
WANG Zeguo,ZHAO Feifei,JI Chunming,et al.Analysis of vibration control of multi-row large-span flexible photovoltaic supports[J].Engineering Journal of Wuhan University,2020,53(S1):29-34.
[14]王泽国,赵菲菲,吉春明,等.多排多跨柔性光伏支架的风致振动分析[J].武汉大学学报(工学版),2021,54(增2):75-79.
WANG Zeguo,ZHAO Feifei,JI Chunming,et al.Wind-induced vibration analysis of multi-row and multi-span flexible photovoltaic support[J].Engineering Journal of Wuhan University,2021,54(S2):75-79.
[15]光伏支架结构设计规程:NB/T 10115—2018[S].北京:中国计划出版社,2018.
Code for design of photovoltaic modules support structures:NB/T 10115—2018[S].Beijing:China Planning Press,2018.
[16]马文勇,柴晓兵,马成成.柔性支撑光伏组件风荷载影响因素试验研究[J].太阳能学报,2021,42(11):10-18.
MA Wenyong,CHAI Xiaobing,MA Chengcheng.Experimental study on wind load influencing factors of flexible support photovoltaic modules[J].Acta Energiae Solaris Sinica,2021,42(11):10-18.
[17]建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版社,2012.
Load code for the design of building structures:GB 50009—2012[S].Beijing:China Architecture & Building Press,2012.
[18]王修琼,崔剑峰.Davenport谱中系数K的计算公式及其工程应用[J].同济大学学报(自然科学版),2002,30(7):849-852.
WANG Xiuqiong,CUI Jianfeng.Formula of coefficient K in expression of davenport spectrum and its engineering application[J].Journal of Tongji University(Natural Science),2002,30(7):849-852.
[19]武 岳,孙 瑛,郑朝荣,等.风工程与结构抗风设计[M].2版.哈尔滨:哈尔滨工业大学出版社,2019:36-41.
WU Yue,SUN Ying,ZHENG Chaorong,et al.Wind engineering and structural wind-resistant design[J].2nd ed.Harbin:Harbin Institute of Technology,2019.
[20]索结构技术规程:JGJ 257—2012[S].北京:中国建筑工业出版社,2012.
Technical specification for cable structures:JGJ 257—2012[S].Beijing:China Architecture & Building Press,2012.
[21]李杰超,魏德敏.大跨索网结构风振系数分析[J].空间结构,2008,14(3):36-40.
LI Jiechao,WEI Demin.Analyses for wind-induced coefficients of long-span cable-net structures[J].Spatial Structures,2008,14(3):36-40.

Memo

Memo:
-
Last Update: 2024-09-30