[1] ZHANG Y Q, MIYAMORI Y, MIKAMI S, et al. Vibration-based structural state identification by a 1-dimensional convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(9): 822-839.
[2]杨 铄,许清风,王卓琳.基于卷积神经网络的结构损伤识别研究进展[J].建筑科学与工程学报,2022,39(4): 38-57.
YANG Shuo, XU Qingfeng, WANG Zhuolin. Research progress on structural damage detection based on convolutional neural networks[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 38-57.
[3]李雪松,马宏伟,林逸洲.基于卷积神经网络的结构损伤识别[J].振动与冲击,2019,38(1): 159-167.
LI Xuesong, MA Hongwei, LIN Yizhou. Structural damage identification based on convolution neural network[J]. Journal of Vibration and Shock, 2019, 38(1): 159-167.
[4]李书进,赵 源,孔 凡,等.卷积神经网络在结构损伤诊断中的应用[J].建筑科学与工程学报,2020,37(6):29-37.
LI Shujin, ZHAO Yuan, KONG Fan, et al. Application of convolutional neural network in structural damage identification[J]. Journal of Architecture and Civil Engineering, 2020, 37(6): 29-37.
[5]AVCI O, ABDELJABER O, KIRANYAZ S, et al. A review of vibration-based damage detection in civil structures:from traditional methods to machine learning and deep learning applications[J]. Mechanical Systems and Signal Processing, 2021, 147: 107077.
[6]HOU R R, XIA Y. Review on the new development of vibration-based damage identification for civil engineering structures:2010-2019[J]. Journal of Sound and Vibration, 2021, 491: 115741.
[7]DEVKAR R, SHIRAVALE S. A survey on multi-label classification for images[J]. International Journal of Computer Applications, 2017, 162(8): 39-42.
[8]WU F, WANG Z H, ZHANG Z F, et al. Weakly semi-supervised deep learning for multi-label image annotation[J]. IEEE Transactions on Big Data, 2015, 1(3): 109-122.
[9]徐 健.基于卷积神经网络的风电机组轴承故障诊断方法研究[D].杭州:浙江大学,2020.
XU Jian. Research on bearing fault diagnosis of wind turbine based on convolutional neural network[D]. Hangzhou:Zhejiang University, 2020.
[10]LI D, LIANG Z L, REN W X, et al. Structural damage identification under nonstationary excitations through recurrence plot and multi-label convolutional neural network[J]. Measurement, 2021, 186: 110101.
[11]TAREKEGN A N, GIACOBINI M, MICHALAK K. A review of methods for imbalanced multi-label classification[J]. Pattern Recognition, 2021, 118: 107965.
[12]胡天磊,王皓波,尹文栋.基于深度双向分类器链的多标签新闻分类算法[J].浙江大学学报(工学版),2019,53(11): 2110-2117.
HU Tianlei, WANG Haobo, YIN Wendong. Multi-label news classification algorithm based on deep bi-directional classifier chains[J]. Journal of Zhejiang University(Engineering Science), 2019, 53(11): 2110-2117.
[13]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521: 436-444.
[14]RASTOGI R, MORTAZA S. Imbalance multi-label data learning with label specific features[J]. Neurocomputing, 2022, 513: 395-408.
[15]CASAS J R, APARICIO A C. Structural damage identification from dynamic-test data[J]. Journal of Structural Engineering, 1994, 120(8): 2437-2450.
[16]董 聪,丁 辉,高 嵩.结构损伤识别和定位的基本原理与方法[J].中国铁道科学,1999,20(3):91-96.
DONG Cong, DING Hui, GAO Song. The basic principle and method for recognition and location of structural damage[J]. China Railway Science, 1999, 20(3): 91-96.
[17]欧进萍,何 政,吴 斌,等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.
OU Jinping, HE Zheng, WU Bin, et al. Seismic damage performance-based design of reinforced concrete structures[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(1): 21-30.
[18]吴子燕,韩 晖,刘书奎.基于刚度损伤指数的桥梁整体损伤程度模糊评定研究[J].工程力学,2011,28(12):92-97.
WU Ziyan, HAN Hui, LIU Shukui. Research on fuzzy assessment on the degree of bridge damage using stiffness damage index[J]. Engineering Mechanics, 2011, 28(12): 92-97.
[19]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[20]李书进,熊书琪,范沛然,等.考虑残差学习的深层卷积神经网络在结构损伤识别中的应用研究[J].工业建筑,2022,52(7):192-198.
LI Shujin, XIONG Shuqi, FAN Peiran, et al. Application research on deep convolutional neural network considering residual learning in structural damage identification[J]. Industrial Construction, 2022, 52(7): 192-198.