|Table of Contents|

Research progress on geometric imperfections of cold-formed steel members(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年02期
Page:
1-15
Research Field:
建筑结构
Publishing date:

Info

Title:
Research progress on geometric imperfections of cold-formed steel members
Author(s):
ZHANG Junfeng1 ZHANG Jiangchuan2 HAN Dongguang3 REN Liqun3
(1. School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, Henan, China; 2. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China; 3. The Second Construction Co., Ltd. of China Construction First Group, Beijing 102600, China)
Keywords:
cold-formed steel geometric imperfection data analysis measurement technique theory of simulation
PACS:
TU392.1
DOI:
10.19815/j.jace.2023.09130
Abstract:
In order to improve the geometric imperfections in the design system of cold-formed steel(CFS)members, the relevant experimental and theoretical achievements in different countries were analyzed through the classification of imperfections, measurement techniques, simulation theories and other aspects. The results show that at present, there is a lack of relevant provisions on distortional imperfections in Chinese standards, which needs to be further improved. In terms of measurement techniques, contact measurement techniques and non-contact measurement techniques have their own advantages and disadvantages in aspects such as cost, measurement accuracy and data post-processing. Among the numerical modeling methods, the finite strip method has a unique advantage in the decomposition of buckling modes and the solution of half-wavelength. The theories of simulation on geometric imperfections are related to buckling modes, among which the first buckling mode approach is the simplest, but its theoretical basis is insufficient and predicted results are not accurate. The traditional combined mode approach is not accurate enough to simulate the global imperfections, and the predicted results of middle long columns and long columns tend to be conservative. The one-dimensional modal spectral approach transforms geometric imperfections from time domain to frequency domain, and the magnitudes of imperfections show a certain periodicity, and the predicted results are more accurate. In addition, the two-dimensional spectral approach is complicated, and the simulation of distortional imperfections and global imperfections is limited. Machine learning provides a new research direction for stochastic probabilistic method, but it requires a lot of measured data about geometric imperfections to train the model.

References:

[1] 李海汀,战科江,王 淼,等.冷弯型钢构件腹板压跛研究进展与趋势[J].建筑钢结构进展,2023,25(5):1-12,52.
LI Haiting, ZHAN Kejiang,WANG Miao,et al.Research progress and trends of cold-formed steel structural members undergoing web crippling[J].Progress in Steel Building Structures, 2023, 25(5): 1-12,52.
[2]ZHAO X, TOOTKABONI M, SCHAFER B W. Development of a laser-based geometric imperfection measurement platform with application to cold-formed steel construction[J]. Experimental Mechanics, 2015, 55(9): 1779-1790.
[3]TORABIAN S, AMOUZEGAR H, TOOTKABONI M, et al. Finite element modeling protocols and parametric analyses for short cold-formed steel zee-section beam-columns[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2016. Orlando: SSRC, 2016: 305-316.
[4]FARZANIAN S, LOUHGHALAM A, SCHAFER B W, et al. Geometric imperfections in shell finite element models of CFS members-a review of current state of practice[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2018. Baltimore: SSRC, 2018: 1-8.
[5]AMOUZEGAR H,SCHAFER B W,TOOTKABONI M.An incremental numerical method for calculation of residual stresses and strains in cold-formed steel members[J]. Thin-walled Structures, 2016, 106: 61-74.
[6]XIA Y, BLUM H. Geometric imperfection measurements of cold-formed steel members using a portable non-contact 3D laser scanner[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2020. Atlanta: SSRC, 2020: 255-269.
[7]SCHAFER B W, LI Z, MOEN C D. Computational modeling of cold-formed steel[J]. Thin-walled Structures, 2010, 48(10/11): 752-762.
[8]MOEN C D,SCHAFER B W.Experiments on cold-formed steel columns with holes[J].Thin-walled Structures,2008,46(10):1164-1182.
[9]PASTOR M M, CASAFONT M, BONADA J, et al. Imperfection amplitudes for nonlinear analysis of open thin-walled steel cross-sections used in rack column uprights[J]. Thin-walled Structures, 2014, 76: 28-41.
[10]LI Z J. Stochastically simulated mode interactions of thin-walled cold-formed steel members using modal identification[J]. Thin-walled Structures, 2018, 128: 171-183.
[11]KUBIAK T, URBANIAK M, ZUCCO G, et al. Imperfection sensitivity analysis of the nonlinear stability of composite beams — numerical and experimental investigations[J].Composites Part B:Engineering,2016,94:360-369.
[12]SCHAFER B W, PEKOZ T. Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses[J]. Journal of Constructional Steel Research, 1998, 47(3): 193-210.
[13]Standard specification for load-bearing(transverse and axial)steel studs, runners(tracks), and bracing or bridging for screw application of gypsum panel products and metal plaster bases: ASTM C955-15[S]. West Conshohocken: ASTM, 2015.
[14]North american standard for cold-formed steel nonstructural framing: AISI S220-20[S]. Washington DC:American Iron and Steel Institute, 2020.
[15]North American standard for cold-formed steel structural framing: AISI S240-15[S]. Washington DC: American Iron and Steel Institute, 2020.
[16]SELVARAJ S, MADHAVAN M. Geometric imperfection measurements and validations on cold-formed steel channels using 3D noncontact laser scanner[J]. Journal of Structural Engineering, 2018, 144(3): 04018010.
[17]冷弯型钢结构技术标准:GB/T 50018—2002[S].北京:中国计划出版社,2002.
Standard for Techniques of Cold-formed Steel Structures: GB/T 50018—2002[S]. Beijing: China Planning Press, 2002.
[18]通用冷弯开口型钢:GB/T 6723—2017[S].北京:中国标准出版社,2017.
Cold forming open section steel for general structure: GB/T 6723—2017[S]. Beijing: Standards Press of China, 2017.
[19]建筑结构用冷弯薄壁型钢:JG/T 380—2012[S].北京:中国标准出版社,2012.
Cold-formed thin-wall steel sections for building structures: JG/T 380—2012[S]. Beijing: Standards Press of China, 2012.
[20]Execution of steel structures and aluminium structures. Part 4: technical requirements for cold-formed structural steel elements and cold-formed structures for roof, ceiling, floor and wall applications: BS EN 1090-4[S]. London: BSI, 2018.
[21]ZHOU X H, XIANG Y, SHI Y, et al. Simplified design method of cold-formed steel columns with built-up box sections[J]. Engineering Structures, 2021, 228: 111532.
[22]YOUNG B,CHEN J.Design of cold-formed steel built-up closed sections with intermediate stiffeners[J]. Journal of Structural Engineering, 2008, 134(5): 727-737.
[23]MENG X, GARDNER L. Cross-sectional behaviour of cold-formed high strength steel circular hollow sections[J]. Thin-walled Structures, 2020, 156: 106822.
[24]MA J L, CHAN T M, YOUNG B. Cold-formed high strength steel tubular beam-columns[J]. Engineering Structures, 2021, 230: 111618.
[25]FARZANIAN S, LOUHGHALAM A, SCHAFER B W, et al. Geometric imperfections in CFS structural members, part Ⅱ: data-driven modeling and probabilistic validation[J]. Thin-walled Structures, 2023, 185: 110620.
[26]SINGER J, ARBOCZ J, WELLER T. Buckling experiments: experimental methods in buckling of thin-walled structures[M]. New York: John Wiley & Sons, 2002.
[27]BERNARD E S, COLEMAN R, BRIDGE R Q. Measurement and assessment of geometric imperfections in thin-walled panels[J]. Thin-walled Structures, 1999, 33(2): 103-126.
[28]BERRY P A,BRIDGE R Q,ROTTER J M. Imperfection measurement of cylinders using automated scanning with a laser displacement meter[J]. Strain, 1996, 32(1): 3-8.
[29]ZHAO X, TOOTKABONI M, SCHAFER B W. Laser-based cross-section measurement of cold-formed steel members:model reconstruction and application[J]. Thin-walled Structures, 2017, 120: 70-80.
[30]ZHAO X, WANG G A, SUN X Y, et al. Modeling of uncertain geometry of cold formed steel members based on laser measurements and machine learning[J]. Engineering Structures, 2023, 279: 115578.
[31]肖 川,魏金满,杨兴盛,等.三维激光测量技术在钢结构制作中的应用研究[J].钢结构,2017,32(12):86-88.
XIAO Chuan, WEI Jinman, YANG Xingsheng, et al. Application of 3D laser scanner technology application in steel structure manufacturing[J]. Steel Construction, 2017, 32(12): 86-88.
[32]FENG P, ZOU Y C, HU L L, et al. Use of 3D laser scanning on evaluating reduction of initial geometric imperfection of steel column with pre-stressed CFRP[J]. Engineering Structures, 2019, 198: 109527.
[33]SALOMON A L, FRATAMICO D, SCHAFER B W, et al. Full field cold formed steel column buckling measurements with high resolution image-based reconstruction[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2016. Orlando: SSRC, 2016: 104-119.
[34]MCANALLEN L, PADILLA-LLANO D, ZHAO X, et al. Initial geometric imperfection measurement and characterization of cold-formed steel C-section structural members with 3D non-contact measurement techniques[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2014. Toronto: SSRC, 2014: 566-590.
[35]SALOMON A L, TAO F N, CAI J L, et al. Buckling mode identification for a cold-formed steel column experiment with 3D image-based reconstruction[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2015. Nashville: SSRC, 2015: 105-114.
[36]ZHAO X. Measurement and application of geometric imperfections in cold-formed steel members[D]. Baltimore: Johns Hopkins University, 2016.
[37]TRAN A T, VELJKOVIC M, REBELO C, et al. Resistance of cold-formed high strength steel circular and polygonal sections. Part 1: experimental investigations[J]. Journal of Constructional Steel Research, 2016, 120: 245-257.
[38]XU D D, WANG Y Q, LIU X L, et al. A novel method and modelling technique for determining the initial geometric imperfection of steel members using 3D scanning[J]. Structures, 2023, 49: 855-874.
[39]ZHANG Z Q, SHI G, HOU L T, et al. Geometric dimension and imperfection measurements of box-T section columns using 3D scanning[J]. Journal of Constructional Steel Research, 2021, 183: 106742.
[40]BORKOWSKI L, GRUDZIECKI J, KOTELKO M, et al. Ultimate and post-ultimate behaviour of thin-walled cold-formed steel open-section members under eccentric compression. Part Ⅱ: experimental study[J]. Thin-walled Structures, 2022, 171: 108802.
[41]邹奕翀,胡黎俐,冯 鹏,等.采用三维激光扫描精准获得钢构件初始几何缺陷的方法[J].工业建筑,2021,51(5):22-29.
ZOU Yichong, HU Lili, FENG Peng, et al. Precise measurement method of initial geometric imperfections of steel structural members using three-dimensional laser scanning[J]. Industrial Construction, 2021, 51(5): 22-29.
[42]姚永红,武振宇.畸变缺陷对冷弯薄壁型钢柱力学性能的影响[J].深圳大学学报(理工版),2012,29(5):48-53.
YAO Yonghong, WU Zhenyu. Effects of distortional imperfections on mechanical properties of cold-formed thin-walled steel columns[J]. Journal of Shenzhen University(Science and Engineering), 2012, 29(5): 48-53.
[43]李焦丽.发生局部-畸变耦合屈曲破坏的冷弯薄壁型钢柱的缺陷敏感性研究[D].长沙:湖南大学,2020.
LI Jiaoli. Study on defect sensitivity of cold-formed thin-walled steel columns with local-distortion coupled buckling failure[D]. Changsha: Hunan University, 2020.
[44]李 东.冷弯薄壁U型钢轴压构件承载力设计的直接强度法研究[D].西安:长安大学,2019.
LI Dong. Study on bearing capacity design of cold-formed thin-walled U-shaped steel members under axial compression by direct strength method[D]. Xi'an: Chang'an University, 2019.
[45]LIU S W, GAO W L, ZIEMIAN R D. Improved line-element formulations for the stability analysis of arbitrarily-shaped open-section beam-columns[J]. Thin-walled Structures, 2019, 144: 106290.
[46]LI Z J. Finite strip modeling of thin-walled members[D]. Baltimore: Johns Hopkins University, 2011.
[47]赵 曦,孙晓燕,李占杰,等.冷弯型钢受压构件几何缺陷研究综述[J].建筑钢结构进展,2023,25(4):1-17.
ZHAO Xi, SUN Xiaoyan, LI Zhanjie, et al. A state of the art review on geometric imperfection research of cold-formed steel members under compression[J]. Progress in Steel Building Structures, 2023, 25(4): 1-17.
[48]PUCKETT J A, GUTKOWSKI R M. Compound strip method for analysis of plate systems[J]. Journal of Structural Engineering, 1986, 112(1): 121-138.
[49]LI Z J, SCHAFER B. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM conventional and constrained finite strip methods[C]//Missouri University of Science and Technology. 20th International Specialty Conference on Cold-Formed Steel Structures. Rolla: Missouri University of Science and Technology, 2010: 16-31.
[50]LI Z, JOO A L, ADANY S, et al. Approximate modal identification in nonlinear collapse analysis of thin-walled members[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2011. Chicago: SSRC, 2011: 168-179.
[51]LI Z, ADANY S, SCHAFER B W. Modal identification for shell finite element models of thin-walled members in nonlinear collapse analysis[J].Thin-walled Structures, 2013, 67: 15-24.
[52]JIN S, LI Z J, TANG Q, et al. A combined force/displacement-based constrained finite strip method for modal stability analysis of thin-walled members[J]. Thin-walled Structures, 2021, 159: 107322.
[53]MESACASA E, DINIS P B, CAMOTIM D, et al.Mode interaction in thin-walled equal-leg angle columns[J]. Thin-walled Structures, 2014, 81: 138-149.
[54]DINIS B P, CAMOTIM D, SILVESTRE N. FEM-based analysis of the local-plate/distortional mode interaction in cold-formed steel lipped channel columns[J]. Computers & Structures, 2007, 85(19/20): 1461-1474.
[55]ABBASI M, KHEZRI M, RASMUSSEN K J R, et al. Elastic buckling analysis of cold-formed steel built-up sections with discrete fasteners using the compound strip method[J]. Thin-walled Structures, 2018, 124: 58-71.
[56]LI Z. Buckling analysis of the finite strip method and theoretical extension of the constrained finite strip method for general boundary conditions[D]. Baltimore: Johns Hopkins University, 2009.
[57]RASMUSSEN K J R, HANCOCK G J. Geometric imperfections in plated structures subject to interaction between buckling modes[J]. Thin-walled Structures, 1988, 6(6): 433-452.
[58]ZEINODDINI V. Geometric Imperfections in Cold-formed Steel Members[D]. Baltimore: Johns Hopkins University, 2011.
[59]ZEINODDINI V, SCHAFER B W. Global imperfections and dimensional variations in cold-formed steel members[J].International Journal of Structural Stability and Dynamics, 2011, 11(5): 829-854.
[60]AKTEPE R, GULDUR ERKAL B. State-of-the-art review on measurement techniques and numerical modeling of geometric imperfections in cold-formed steel members[J]. Journal of Constructional Steel Research, 2023, 207: 107942.
[61]UNGUREANU V, DUBINA D. Erosion effect of geometrical and material imperfections on the buckling strength of thin-walled cold-formed steel members[C]//SHE Z Y, LI G Q, CHAN S L. Advances in Steel Structures.Amsterdam:Elsevier, 2005: 497-504.
[62]钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2017.
Ministry of housing and urban-rural development of the People's Republic of China. Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017.
[63]Standard specification for general requirements for rolled structural steel bars, plates, shapes, and sheet piling: ASTM A6/A6M[S]. West Conshohocken: ASTM International, 2023.
[64]ZEINODDINI V M, SCHAFER B W. Simulation of geometric imperfections in cold-formed steel members using spectral representation approach[J]. Thin-walled Structures, 2012, 60: 105-117.
[65]FARZANIAN S, LOUHGHALAM A, SCHAFER B W, et al. Geometric imperfections in CFS structural members: part Ⅰ: a review of the basics and some modeling strategies[J].Thin-walled Structures,2023,186:110619.
[66]CASTRO S G P, ZIMMERMANN R, ARBELO M A, et al. Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors[J]. Thin-walled Structures, 2013, 72: 76-87.
[67]CASTRO S G P,ZIMMERMANN R,ARBELO M A, et al. Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells[J]. Thin-walled Structures, 2014, 74: 118-132.
[68]PETERMAN K D, SCHAFER B W. Experiments on the stability of sheathed cold formed steel studs under axial load and bending[D]. Baltimore: Johns Hopkins University, 2012.
[69]Cold-formed steel structures: AS/NZS 4600:2018[S]. Wellington: SNZ, 2018.
[70]KAITILA O.Imperfection sensitivity analysis of lipped channel columns at high temperatures[J].Journal of Constructional Steel Research, 2002, 58(3): 333-351.
[71]GARDNER L,NETHERCOT D A. Numerical modeling of stainless steel structural components-a consistent approach[J]. Journal of Structural Engineering, 2004, 130(10): 1586-1601.
[72]ASHRAF M, GARDNER L, NETHERCOT D A. Finite element modelling of structural stainless steel cross-sections[J]. Thin-walled Structures, 2006, 44(10): 1048-1062.
[73]BONADA J, CASAFONT M, ROURE F, et al. Selection of the initial geometrical imperfection in nonlinear FE analysis of cold-formed steel rack columns[J]. Thin-walled Structures, 2012, 51: 99-111.
[74]赵 阳.冷弯薄壁型钢双肢拼合箱形截面短柱局部屈曲性能研究[D].西安:长安大学,2019.
ZHAO Yang. Research on behavior of cold-formed steel built-up box section short columns failed in local buckling[D]. Xi'an: Chang'an University, 2019.
[75]丁嘉豪.冷弯薄壁型钢双肢闭合箱形截面短柱基于“承载力单元”的叠加法研究[D].西安:长安大学,2021.
DING Jiahao. Research on “bearing capacity unit” superposition method of cold-formed double-limb closed-section built-up short columns[D]. Xi'an: Chang'an University, 2021.
[76]WALPORT F, GARDNER L, NETHERCOT D A. Equivalent bow imperfections for use in design by second order inelastic analysis[J]. Structures, 2020, 26: 670-685.
[77]熊钰豪.冷弯方、矩形钢管压弯构件设计方法的研究[D].西安:长安大学,2021.
XIONG Yuhao. Study on design method of cold-formed square and rectangular steel tube members[D]. Xi'an: Chang'an University, 2021.
[78]XU Y, WU B C, ZHENG B F. Full-field geometric imperfection and effect on cross-section capacity of circular steel tubes[J]. Journal of Constructional Steel Research, 2023, 201: 107749.
[79]DINIS B P, CAMOTIM D. Local/distortional mode interaction in cold-formed steel lipped channel beams[J]. Thin-walled Structures, 2010, 48(10/11): 771-785.
[80]陈美合.多种屈曲模态下卷边C形截面不锈钢柱计算理论研究[D].南京:东南大学,2021.
CHEN Meihe. Theoretical study on calculation of rolled C-section stainless steel columns under various buckling modes[D]. Nanjing: Southeast University, 2021.
[81]顾明剑,张其林.引入一阶屈曲模态作为初始缺陷的研究[C]//天津大学.第五届全国现代结构工程学术研讨会论文集.北京:《工业建筑》杂志社,2005:1209-1213.
GU Mingjian,ZHANG Qilin.Research on introducing first-order buckling mode as initial imperfection[C]//Tianjin University. Proceedings of the 5th National Symposium on Modern Structural Engineering. Beijing: Industrial Construction为标准差。可以发现:一维频谱模态法的预测结果比较接近实际情况; 二维频谱法由于在展开和还原的过程会产生误差,不能较为准确地模拟畸变缺陷和整体缺陷,存在一定的局限性。
图11 几何缺陷的模拟统计值与实测值对比
Fig.11 Comparison between simulated statistical
values and measured values of geometric
imperfections4.3 随机概率法
随机概率法通过随机模拟缺陷形状或缺陷幅值的方式表征未知的缺陷,近年来的创新方向为搭建机器学习框架,这需要大量的实测数据用以训练模型,才能得到接近实际的缺陷模拟结果。Farzanian等[25]研究发现,在使用常规的模拟理论对CFS构件进行非线性分析后,得到的构件极限强度或承载力的离散程度较高,因此基于实测几何缺陷数据进行机器学习训练,开发了一个能够生成随机场的几何缺陷概率模型。与许多建模方法不同的是,随机场内数据的概率分布并未被假定为任何特定形式,而是与实测数据相匹配,但部分模型的可靠性还有待验证。Zhao等[30]根据设计好的特征识别算法,对112个C形CFS构件的激光测量点云数据进行参数化处理,并使用多维高斯过程来表征沿纵向联合分布的局部几何参数和全局几何参数,将这些几何参数汇总成集,可作为基础数据,用来进行机器学习中最大似然估计的训练,最终可重构包含几何缺陷信息的CFS构件模型。对48个样本的验证结果表明,这种靠机器学习建立的高斯模型适用于大多数C形构件的几何缺陷表征。
在缺乏足够的缺陷信息时,通常会简化或假定几何缺陷的随机可变性来模拟最不利情况,以获得偏于安全的缺陷模拟结果。Lauterbach等[84]通过谱分解法分析了非常有限的缺陷数据,假设几何缺陷的随机可变性满足高斯分布以进行简化处理,凭此构建出几何缺陷随机场。
此外,还有一些其他的几何缺陷模拟理论,例如将虚拟的名义荷载视为横向荷载的虚拟荷载法。Chou等[85]使用垂直于构件表面的横向载荷模拟局部几何缺陷,而AISI规范[86]根据不同的设计方法规定了对应的虚拟荷载计算公式,并指出可利用虚拟荷载考虑初始缺陷。
5 结 语
(1)根据各国相关规范对于CFS构件制造尺寸的控制,将构件几何缺陷进行分类。从各国规范的对比中可以发现,美国规范的分类最为细致,而中国规范对整体缺陷的分类不够细致,同时缺乏畸变缺陷的相关规定,需要在未来进一步完善。
(2)几何缺陷可分为接触式测量法和非接触式测量法,两类缺陷测量方法在成本、操作难度、测量效率、数据后处理和测量精度方面都有各自的优缺点。接触式测量法对设备的要求低,操作和数据后处理简单,但在测量时效率较低,且数据精度不足。相较于接触式测量法,非接触式测量法具有精度和测量效率高的优势,得到了快速发展。然而由于对设备与环境的要求很高,非接触式测量法的运行成本很高,难以大范围推广。此外,点云数据过于庞杂,只有在处理冗余的异常数据后,才能定位构件表面的坐标,准确描绘构件轮廓,并与理想形状作对比。在未来,应简化非接触式测量法的设备布置以降低成本; 为提高分析结果的精确度与效率,应针对不同的测量设备去开发合适的点云数据算法。
(3)各类数值模拟方法能以较小的资金成本和时间成本代替部分试验,其中有限元法和有限条法最为主流。有限元法精度高,但建模复杂、计算效率低; 有限条法操作便捷、计算效率高,但无法准确模拟具有复杂截面的构件和包含螺钉等连接件的组合截面构件。为了更精确地预测构件的受力性能,应针对几何缺陷改进模拟方法并开发相关软件,它们的可靠性需要经过实测数据的验证。已有研究统计了冷弯型钢构件各类几何缺陷的测量值,使研究者可针对特定构件查询相关的几何缺陷信息。为构建完整的几何缺陷数据库,在未来要对更多截面类型的构件进行实测,丰富包括半波长在内的各项几何缺陷信息。
(4)得益于计算机的发展,研究者在提出与验证各种缺陷模拟理论时,分解提取缺陷形状和变换频域等复杂要求已能够被满足。常规的缺陷模拟理论涉及屈曲模态,其中一致缺陷模态法最为简便,但理论依据不足且预测结果不准确,在研究重点不在几何缺陷方面的冷弯型钢构件中有大量应用; 传统组合模态法考虑多种屈曲模态,但对整体缺陷的模拟不够准确,对于中长柱和长柱的预测结果趋于安全; 一维频谱模态法将几何缺陷由时域变换至频域,缺陷幅值表现出一定的周期性,预测结果较为准确,应用前景广。而二维频谱法理论复杂,对畸变缺陷和整体缺陷的模拟不够准确,存在一定的局限性。此外,根据几何缺陷实测数据开发机器学习框架为相关模拟提供了一种新途径,通过大量实测数据的训练,能形成充分考虑几何缺陷随机性的模型。目前,在开发适用于C形构件的模型方面已取得一定进展; 在未来,开发完成的机器学习框架应能针对CFS构件的不同类型,智能地调整分析历程,但要实现这样的前景,需要统计极大数量的缺陷数据并将它们用于模型的训练。

[1] 李海汀,战科江,王 淼,等.冷弯型钢构件腹板压跛研究进展与趋势[J].建筑钢结构进展,2023,25(5):1-12,52.
LI Haiting, ZHAN Kejiang,WANG Miao,et al.Research progress and trends of cold-formed steel structural members undergoing web crippling[J].Progress in Steel Building Structures, 2023, 25(5): 1-12,52.
[2]ZHAO X, TOOTKABONI M, SCHAFER B W. Development of a laser-based geometric imperfection measurement platform with application to cold-formed steel construction[J]. Experimental Mechanics, 2015, 55(9): 1779-1790.
[3]TORABIAN S, AMOUZEGAR H, TOOTKABONI M, et al. Finite element modeling protocols and parametric analyses for short cold-formed steel zee-section beam-columns[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2016. Orlando: SSRC, 2016: 305-316.
[4]FARZANIAN S, LOUHGHALAM A, SCHAFER B W, et al. Geometric imperfections in shell finite element models of CFS members-a review of current state of practice[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2018. Baltimore: SSRC, 2018: 1-8.
[5]AMOUZEGAR H,SCHAFER B W,TOOTKABONI M.An incremental numerical method for calculation of residual stresses and strains in cold-formed steel members[J]. Thin-walled Structures, 2016, 106: 61-74.
[6]XIA Y, BLUM H. Geometric imperfection measurements of cold-formed steel members using a portable non-contact 3D laser scanner[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2020. Atlanta: SSRC, 2020: 255-269.
[7]SCHAFER B W, LI Z, MOEN C D. Computational modeling of cold-formed steel[J]. Thin-walled Structures, 2010, 48(10/11): 752-762.
[8]MOEN C D,SCHAFER B W.Experiments on cold-formed steel columns with holes[J].Thin-walled Structures,2008,46(10):1164-1182.
[9]PASTOR M M, CASAFONT M, BONADA J, et al. Imperfection amplitudes for nonlinear analysis of open thin-walled steel cross-sections used in rack column uprights[J]. Thin-walled Structures, 2014, 76: 28-41.
[10]LI Z J. Stochastically simulated mode interactions of thin-walled cold-formed steel members using modal identification[J]. Thin-walled Structures, 2018, 128: 171-183.
[11]KUBIAK T, URBANIAK M, ZUCCO G, et al. Imperfection sensitivity analysis of the nonlinear stability of composite beams — numerical and experimental investigations[J].Composites Part B:Engineering,2016,94:360-369.
[12]SCHAFER B W, PEKOZ T. Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses[J]. Journal of Constructional Steel Research, 1998, 47(3): 193-210.
[13]Standard specification for load-bearing(transverse and axial)steel studs, runners(tracks), and bracing or bridging for screw application of gypsum panel products and metal plaster bases: ASTM C955-15[S]. West Conshohocken: ASTM, 2015.
[14]North american standard for cold-formed steel nonstructural framing: AISI S220-20[S]. Washington DC:American Iron and Steel Institute, 2020.
[15]North American standard for cold-formed steel structural framing: AISI S240-15[S]. Washington DC: American Iron and Steel Institute, 2020.
[16]SELVARAJ S, MADHAVAN M. Geometric imperfection measurements and validations on cold-formed steel channels using 3D noncontact laser scanner[J]. Journal of Structural Engineering, 2018, 144(3): 04018010.
[17]冷弯型钢结构技术标准:GB/T 50018—2002[S].北京:中国计划出版社,2002.
Standard for Techniques of Cold-formed Steel Structures: GB/T 50018—2002[S]. Beijing: China Planning Press, 2002.
[18]通用冷弯开口型钢:GB/T 6723—2017[S].北京:中国标准出版社,2017.
Cold forming open section steel for general structure: GB/T 6723—2017[S]. Beijing: Standards Press of China, 2017.
[19]建筑结构用冷弯薄壁型钢:JG/T 380—2012[S].北京:中国标准出版社,2012.
Cold-formed thin-wall steel sections for building structures: JG/T 380—2012[S]. Beijing: Standards Press of China, 2012.
[20]Execution of steel structures and aluminium structures. Part 4: technical requirements for cold-formed structural steel elements and cold-formed structures for roof, ceiling, floor and wall applications: BS EN 1090-4[S]. London: BSI, 2018.
[21]ZHOU X H, XIANG Y, SHI Y, et al. Simplified design method of cold-formed steel columns with built-up box sections[J]. Engineering Structures, 2021, 228: 111532.
[22]YOUNG B,CHEN J.Design of cold-formed steel built-up closed sections with intermediate stiffeners[J]. Journal of Structural Engineering, 2008, 134(5): 727-737.
[23]MENG X, GARDNER L. Cross-sectional behaviour of cold-formed high strength steel circular hollow sections[J]. Thin-walled Structures, 2020, 156: 106822.
[24]MA J L, CHAN T M, YOUNG B. Cold-formed high strength steel tubular beam-columns[J]. Engineering Structures, 2021, 230: 111618.
[25]FARZANIAN S, LOUHGHALAM A, SCHAFER B W, et al. Geometric imperfections in CFS structural members, part Ⅱ: data-driven modeling and probabilistic validation[J]. Thin-walled Structures, 2023, 185: 110620.
[26]SINGER J, ARBOCZ J, WELLER T. Buckling experiments: experimental methods in buckling of thin-walled structures[M]. New York: John Wiley & Sons, 2002.
[27]BERNARD E S, COLEMAN R, BRIDGE R Q. Measurement and assessment of geometric imperfections in thin-walled panels[J]. Thin-walled Structures, 1999, 33(2): 103-126.
[28]BERRY P A,BRIDGE R Q,ROTTER J M. Imperfection measurement of cylinders using automated scanning with a laser displacement meter[J]. Strain, 1996, 32(1): 3-8.
[29]ZHAO X, TOOTKABONI M, SCHAFER B W. Laser-based cross-section measurement of cold-formed steel members:model reconstruction and application[J]. Thin-walled Structures, 2017, 120: 70-80.
[30]ZHAO X, WANG G A, SUN X Y, et al. Modeling of uncertain geometry of cold formed steel members based on laser measurements and machine learning[J]. Engineering Structures, 2023, 279: 115578.
[31]肖 川,魏金满,杨兴盛,等.三维激光测量技术在钢结构制作中的应用研究[J].钢结构,2017,32(12):86-88.
XIAO Chuan, WEI Jinman, YANG Xingsheng, et al. Application of 3D laser scanner technology application in steel structure manufacturing[J]. Steel Construction, 2017, 32(12): 86-88.
[32]FENG P, ZOU Y C, HU L L, et al. Use of 3D laser scanning on evaluating reduction of initial geometric imperfection of steel column with pre-stressed CFRP[J]. Engineering Structures, 2019, 198: 109527.
[33]SALOMON A L, FRATAMICO D, SCHAFER B W, et al. Full field cold formed steel column buckling measurements with high resolution image-based reconstruction[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2016. Orlando: SSRC, 2016: 104-119.
[34]MCANALLEN L, PADILLA-LLANO D, ZHAO X, et al. Initial geometric imperfection measurement and characterization of cold-formed steel C-section structural members with 3D non-contact measurement techniques[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2014. Toronto: SSRC, 2014: 566-590.
[35]SALOMON A L, TAO F N, CAI J L, et al. Buckling mode identification for a cold-formed steel column experiment with 3D image-based reconstruction[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2015. Nashville: SSRC, 2015: 105-114.
[36]ZHAO X. Measurement and application of geometric imperfections in cold-formed steel members[D]. Baltimore: Johns Hopkins University, 2016.
[37]TRAN A T, VELJKOVIC M, REBELO C, et al. Resistance of cold-formed high strength steel circular and polygonal sections. Part 1: experimental investigations[J]. Journal of Constructional Steel Research, 2016, 120: 245-257.
[38]XU D D, WANG Y Q, LIU X L, et al. A novel method and modelling technique for determining the initial geometric imperfection of steel members using 3D scanning[J]. Structures, 2023, 49: 855-874.
[39]ZHANG Z Q, SHI G, HOU L T, et al. Geometric dimension and imperfection measurements of box-T section columns using 3D scanning[J]. Journal of Constructional Steel Research, 2021, 183: 106742.
[40]BORKOWSKI L, GRUDZIECKI J, KOTELKO M, et al. Ultimate and post-ultimate behaviour of thin-walled cold-formed steel open-section members under eccentric compression. Part Ⅱ: experimental study[J]. Thin-walled Structures, 2022, 171: 108802.
[41]邹奕翀,胡黎俐,冯 鹏,等.采用三维激光扫描精准获得钢构件初始几何缺陷的方法[J].工业建筑,2021,51(5):22-29.
ZOU Yichong, HU Lili, FENG Peng, et al. Precise measurement method of initial geometric imperfections of steel structural members using three-dimensional laser scanning[J]. Industrial Construction, 2021, 51(5): 22-29.
[42]姚永红,武振宇.畸变缺陷对冷弯薄壁型钢柱力学性能的影响[J].深圳大学学报(理工版),2012,29(5):48-53.
YAO Yonghong, WU Zhenyu. Effects of distortional imperfections on mechanical properties of cold-formed thin-walled steel columns[J]. Journal of Shenzhen University(Science and Engineering), 2012, 29(5): 48-53.
[43]李焦丽.发生局部-畸变耦合屈曲破坏的冷弯薄壁型钢柱的缺陷敏感性研究[D].长沙:湖南大学,2020.
LI Jiaoli. Study on defect sensitivity of cold-formed thin-walled steel columns with local-distortion coupled buckling failure[D]. Changsha: Hunan University, 2020.
[44]李 东.冷弯薄壁U型钢轴压构件承载力设计的直接强度法研究[D].西安:长安大学,2019.
LI Dong. Study on bearing capacity design of cold-formed thin-walled U-shaped steel members under axial compression by direct strength method[D]. Xi'an: Chang'an University, 2019.
[45]LIU S W, GAO W L, ZIEMIAN R D. Improved line-element formulations for the stability analysis of arbitrarily-shaped open-section beam-columns[J]. Thin-walled Structures, 2019, 144: 106290.
[46]LI Z J. Finite strip modeling of thin-walled members[D]. Baltimore: Johns Hopkins University, 2011.
[47]赵 曦,孙晓燕,李占杰,等.冷弯型钢受压构件几何缺陷研究综述[J].建筑钢结构进展,2023,25(4):1-17.
ZHAO Xi, SUN Xiaoyan, LI Zhanjie, et al. A state of the art review on geometric imperfection research of cold-formed steel members under compression[J]. Progress in Steel Building Structures, 2023, 25(4): 1-17.
[48]PUCKETT J A, GUTKOWSKI R M. Compound strip method for analysis of plate systems[J]. Journal of Structural Engineering, 1986, 112(1): 121-138.
[49]LI Z J, SCHAFER B. Buckling analysis of cold-formed steel members with general boundary conditions using CUFSM conventional and constrained finite strip methods[C]//Missouri University of Science and Technology. 20th International Specialty Conference on Cold-Formed Steel Structures. Rolla: Missouri University of Science and Technology, 2010: 16-31.
[50]LI Z, JOO A L, ADANY S, et al. Approximate modal identification in nonlinear collapse analysis of thin-walled members[C]//SSRC. Structural Stability Research Council Annual Stability Conference 2011. Chicago: SSRC, 2011: 168-179.
[51]LI Z, ADANY S, SCHAFER B W. Modal identification for shell finite element models of thin-walled members in nonlinear collapse analysis[J].Thin-walled Structures, 2013, 67: 15-24.
[52]JIN S, LI Z J, TANG Q, et al. A combined force/displacement-based constrained finite strip method for modal stability analysis of thin-walled members[J]. Thin-walled Structures, 2021, 159: 107322.
[53]MESACASA E, DINIS P B, CAMOTIM D, et al.Mode interaction in thin-walled equal-leg angle columns[J]. Thin-walled Structures, 2014, 81: 138-149.
[54]DINIS B P, CAMOTIM D, SILVESTRE N. FEM-based analysis of the local-plate/distortional mode interaction in cold-formed steel lipped channel columns[J]. Computers & Structures, 2007, 85(19/20): 1461-1474.
[55]ABBASI M, KHEZRI M, RASMUSSEN K J R, et al. Elastic buckling analysis of cold-formed steel built-up sections with discrete fasteners using the compound strip method[J]. Thin-walled Structures, 2018, 124: 58-71.
[56]LI Z. Buckling analysis of the finite strip method and theoretical extension of the constrained finite strip method for general boundary conditions[D]. Baltimore: Johns Hopkins University, 2009.
[57]RASMUSSEN K J R, HANCOCK G J. Geometric imperfections in plated structures subject to interaction between buckling modes[J]. Thin-walled Structures, 1988, 6(6): 433-452.
[58]ZEINODDINI V. Geometric Imperfections in Cold-formed Steel Members[D]. Baltimore: Johns Hopkins University, 2011.
[59]ZEINODDINI V, SCHAFER B W. Global imperfections and dimensional variations in cold-formed steel members[J].International Journal of Structural Stability and Dynamics, 2011, 11(5): 829-854.
[60]AKTEPE R, GULDUR ERKAL B. State-of-the-art review on measurement techniques and numerical modeling of geometric imperfections in cold-formed steel members[J]. Journal of Constructional Steel Research, 2023, 207: 107942.
[61]UNGUREANU V, DUBINA D. Erosion effect of geometrical and material imperfections on the buckling strength of thin-walled cold-formed steel members[C]//SHE Z Y, LI G Q, CHAN S L. Advances in Steel Structures.Amsterdam:Elsevier, 2005: 497-504.
[62]钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2017.
Ministry of housing and urban-rural development of the People's Republic of China. Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017.
[63]Standard specification for general requirements for rolled structural steel bars, plates, shapes, and sheet piling: ASTM A6/A6M[S]. West Conshohocken: ASTM International, 2023.
[64]ZEINODDINI V M, SCHAFER B W. Simulation of geometric imperfections in cold-formed steel members using spectral representation approach[J]. Thin-walled Structures, 2012, 60: 105-117.
[65]FARZANIAN S, LOUHGHALAM A, SCHAFER B W, et al. Geometric imperfections in CFS structural members: part Ⅰ: a review of the basics and some modeling strategies[J].Thin-walled Structures,2023,186:110619.
[66]CASTRO S G P, ZIMMERMANN R, ARBELO M A, et al. Exploring the constancy of the global buckling load after a critical geometric imperfection level in thin-walled cylindrical shells for less conservative knock-down factors[J]. Thin-walled Structures, 2013, 72: 76-87.
[67]CASTRO S G P,ZIMMERMANN R,ARBELO M A, et al. Geome

Memo

Memo:
-
Last Update: 2025-03-20