|Table of Contents|

Calculation of axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年02期
Page:
58-66
Research Field:
建筑结构
Publishing date:

Info

Title:
Calculation of axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups
Author(s):
YANG Kun1 HU Yangyang2 SUN Shanshan1 GAO Xiaomin3 JI Kangle1
(1. School of Civil Engineering, Chang'an University, Xi'an 710061, Shaanxi, China; 2. XAUAT Engineering Technology Co., Ltd., Xi'an 710055, Shaanxi, China; 3. China Construction Sixth Engineering Bureau Civil Engineering Co., Ltd., Tianjin 300457, China)
Keywords:
multi-spiral composite stirrup twin shear unified strength theory axial compression bearing capacity experimental investigation theoretical calculation method
PACS:
TU375.3
DOI:
10.19815/j.jace.2023.03027
Abstract:
In order to study the axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups, an axial compression experimental study including 7 short columns of this type was carried out. The effects of stirrup spacing, stirrup form and stirrup strength on the axial compression bearing capacity of the columns were discussed. Considering the multiple confinement effect of rectangular outer hoop, circular spiral inner hoop and the concrete cylinder surrounded by outer spiral stirrups on core concrete, the confinement mechanism of multi-spiral composite stirrup was analyzed. Based on the twin shear unified strength theory, the calculation formula of axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups was derived and compared with the test results, existing national regulation and the calculation formulas proposed by scholars. The results show that the strength and ductility of multi-spiral stirrup confined concrete specimens increase with the decrease of stirrup spacing or the increase of stirrup strength. The constraint effect of multi-spiral composite stirrups is better than that of traditional cross-shaped composite stirrups, and the constraint effect of five-spiral composite stirrups is better than that of four-spiral composite stirrups. The proposed formula for calculating axial compressive capacity is of high accuracy, which verifies the applicability of the unified strength theory in the calculation of axial compression bearing capacity of concrete square columns confined by multi-spiral composite stirrups. Compared with the rectangular outer hoop, the spacing and strength of the circular spiral inner hoop have a more obvious effect on the increase of axial compression bearing capacity of the confined concrete square column.

References:

[1] PRIESTLEY M J N, PARK R. Strength and ductility of concrete bridge columns under seismic loading[J]. ACI Structural Journal, 1987, 84(1): 61-76.
[2]TANAKA H. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns[D]. Canterbury: University of Canterbury, 1990.
[3]TANAKA H, PARK R. Seismic design and behavior of reinforced concrete columns with interlocking spirals[J]. ACI Structural Journal, 1993, 90(2): 192-203.
[4]KIM J K, PARK C K. The behaviour of concrete columns with interlocking spirals[J]. Engineering Structures, 1999, 21(10): 945-953.
[5]CORREAL J F, SAIIDI M, SANDERS D H. Seismic performance of RC bridge columns reinforced with two interlocking spirals[M]. Reno: University of Nevada, 2004.
[6]CORREAL J F, SAIIDI M S, SANDERS D, et al. Analytical evaluation of bridge columns with double interlocking spirals[J]. ACI Structural Journal, 2007, 104(3): 314-323.
[7]CORREAL J F, SAIIDI M S, SANDERS D,et al.Shake table studies of bridge columns with double interlocking spirals[J]. ACI Structural Journal, 2007, 104(4): 393-401.
[8]OU Y C, NGO S H, YIN S Y, et al. Shear behavior of oblong bridge columns with innovative seven-spiral transverse reinforcement[J]. ACI Structural Journal, 2014, 111(6): 1339-1350.
[9]尹衍樑.矩形混凝土柱新的约束型式之研发(Ⅱ)外方内圆、组合螺箍及其衍生型式[J].土木工程学报,2004,37(10):1-12.
YIN Yanliang. Researches and developments of alternative confinements for rectangular concrete columns(Ⅱ)[J]. China Civil Engineering Journal, 2004, 37(10): 1-12.
[10]尹衍樑,翁正强,王瑞祯,等.预铸复合螺箍SRC柱之轴压行为研究[J].中国工程科学,2006,8(12):16-30.
YIN Yanliang, WENG Zhengqiang, WANG Ruizhen, et al. Axial compressive behavior of precast SRC columns with multi-spirals[J]. Engineering Science, 2006, 8(12): 16-30.
[11]翁正强,尹衍樑,王瑞祯,等.五螺旋矩形RC柱之轴压试验与优化设计研究[J].结构工程,2010,25(1):71-105.
WENG Zhengqiang, YIN Yanliang, WANG Ruizhen, et al. Research on axial compression test and optimization design of five-screw hoop rectangular RC columns[J]. Structural engineering, 2010, 25(1): 71-105.
[12]YIN Y L, WU T L, LIU T C, et al. Interlocking spiral confinement for rectangular columns[J]. Concrete international, 2011, 33(12): 38-45.
[13]YIN S, WANG J C, WANG P H. Development of multi-spiral confinements in rectangular columns for construction automation[J]. Journal of the Chinese Institute of Engineers, 2012, 35(3): 309-320.
[14]WENG C, YIN Y, WANG J, et al. Seismic cyclic loading test of SRC columns confined with 5-spirals[J]. Science in China Series E: Technological Sciences, 2008,51(5): 529-555.
[15]翁正强,尹衍梁,王瑞祯,等.预铸五螺箍矩形SRC柱之轴压与反复载重抗震试验[J].建筑钢结构进展,2007,9(6):12-19.
WENG Zhengqiang, YIN Yanliang, WANG Ruizhen, et al. Axial compression and seismic behavior of precast rectangular SRC columns confined with 5-spirals[J]. Progress in Steel Building Structures, 2007, 9(6): 12-19.
[16]LIANG C Y, CHEN C C, WENG C C, et al. Axial compressive behavior of square composite columns confined by multiple spirals[J]. Journal of Constructional Steel Research, 2014, 103: 230-240.
[17]唐 琼,李 易,陆新征,等.多螺箍筋柱轴压承载力研究[J].工程力学,2018,35(增1):166-171.
TANG Qiong, LI Yi, LU Xinzheng, et al. Study on axial compression capacity of multi-spiral hoops confined concrete columns[J]. Engineering Mechanics, 2018, 35(S1): 166-171.
[18]刘成清,邓佑毅,方登甲,等.新型五螺箍矩形短柱轴压承载力计算分析[J].西南交通大学学报,2022,57(6):1157-1164,1174.
LIU Chengqing, DENG Youyi, FANG Dengjia, et al. Calculation method of axial compression capacity for rectangular short reinforced concrete columns confined with innovative five-spiral stirrups[J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1157-1164, 1174.
[19]JING D H, YU T, LIU X D. New configuration of transverse reinforcement for improved seismic resistance of rectangular RC columns: concept and axial compressive behavior[J]. Engineering Structures, 2016, 111: 383-393.
[20]LI Y Z, CAO S Y, JING D H. Analytical compressive stress-strain model for concrete confined with high-strength multiple-tied-spiral transverse reinforcement[J]. The Structural Design of Tall and Special Buildings, 2018, 27(2): e1416.
[21]JING D H, HUANG L B. Effect of transverse reinforcement on rectangular concrete columns with MTSTR[J]. Magazine of Concrete Research, 2019, 71(2): 71-84.
[22]杨 坤,郭书慧,王亚昆,等.新型多螺旋复合箍筋约束混凝土方柱的轴压性能试验研究[J].建筑科学与工程学报,2023,40(4):80-86.
YANG Kun, GUO Shuhui, WANG Yakun, et al. Experimental study on axial compression performance of square concrete column confined with new multi-spiral composite stirrups[J]. Journal of Architecture and Civil Engineering, 2023, 40(4): 80-86.
[23]俞茂宏.双剪理论及其应用[M].北京:科学出版社,1998.
YU Maohong. Double shear theory and its application[M]. Beijing: Science Press, 1998.
[24]史庆轩,戎 翀,任 浩,等.基于统一强度理论的钢管混凝土柱承载力计算[J].力学季刊,2015,36(4):690-696.
SHI Qingxuan, RONG Chong, REN Hao, et al. Calculation of the compressive strength of concrete filled steel tube(CFST)based on the twin shear unified strength theory[J]. Chinese Quarterly of Mechanics, 2015, 36(4): 690-696.
[25]史庆轩,戎 翀,张 婷,等.约束混凝土实用本构关系模型[J].建筑材料学报,2017,20(1):49-54.
SHI Qingxuan, RONG Chong, ZHANG Ting, et al. A practical stress-strain model for confined concrete[J]. Journal of Building Materials, 2017, 20(1): 49-54.
[26]LI Y Z, CAO S Y, JING D H. Axial compressive behaviour of RC columns with high-strength MTS transverse reinforcement[J]. Magazine of Concrete Research, 2017, 69(9): 436-452.
[27]SAKINO K, NAKAHARA H, MORINO S, et al. Behavior of centrally loaded concrete-filled steel-tube short columns[J]. Journal of Structural Engineering, 2004, 130(2): 180-188.
[28]张常光,赵均海,魏雪英,等.外方内圆中空夹层钢管混凝土轴压短柱的极限承载力[J].建筑科学与工程学报,2008,25(4):78-82.
ZHANG Changguang, ZHAO Junhai, WEI Xueying, et al. Ultimate bearing capacity of CHS inner and SHS outer concrete-filled double skin tubes stub columns[J]. Journal of Architecture and Civil Engineering, 2008, 25(4): 78-82.
[29]赵均海,徐坚锋,李 艳.带肋薄壁方钢管混凝土轴压短柱的极限承载力[J].混凝土,2013(9):5-9.
ZHAO Junhai, XU Jianfeng, LI Yan. The ultimate bearing capacity for the concrete-filled square stiffened thin-walled steel tubular short columns under axial compression[J]. Concrete, 2013(9): 5-9.
[30]混凝土结构设计规范:GB 50010—2010[M].北京:中国建筑工业出版社,2016.
Code for design of concrete structures: GB 50010—2010[M]. Beijing: China Architecture & Building Press, 2016.
[31]蔡绍怀,焦占拴.复式钢管混凝土柱的基本性能和承载力计算[J].建筑结构学报,1997,18(6):20-25.
CAI Shaohuai, JIAO Zhanshuan. Behavior and ultimate load analysis of multibarrel tube-confined concrete columns[J]. Journal of Building Structures, 1997, 18(6): 20-25.

Memo

Memo:
-
Last Update: 2025-03-20