|Table of Contents|

Tensile performance test and failure mode of steel plate-steel bar welded joint(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年03期
Page:
1-14
Research Field:
建筑结构
Publishing date:

Info

Title:
Tensile performance test and failure mode of steel plate-steel bar welded joint
Author(s):
ZHU Weiqing DOU Tongyu SUN Jinghang WEI Lixin QI Jiaxuan YANG Cheng
(School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China)
Keywords:
steel plate-steel bar welding welded joint tensile property failure mode ABAQUS finite element verification
PACS:
TU398
DOI:
10.19815/j.jace.2024.06088
Abstract:
In order to investigate the tensile performance and failure modes of these joints, 10 sets of steel plate-steel bar welded joint specimens were fabricated and subjected to uniaxial tensile tests. The effects of steel bar diameter, steel plate thickness, steel plate width, and lap length on the bearing capacity and failure modes of the specimens were analyzed. Additionally, the stress distribution along the longitudinal direction of the steel bars and both longitudinal and transverse directions of the steel plates was examined, then the test results were simulated by using ABAQUS software. The results indicate that when the width of the steel plate is 50 mm, the thickness of the steel plate increases from 10 mm to 12 mm, and the failure mode changes from steel plate tearing to steel bar fracture, and the width and thickness of the steel plate have a great influence on the failure mode. When the lap length is less than or equal to 30 mm, the weld will tear with the steel plate. The bearing capacity of the welded joint increases with the increase of the diameter of the steel bar, the thickness of the steel plate, the width of the steel plate and the lap length, and the thickness of the steel plate has the greatest influence on the bearing capacity of the joint. The overall change trend of the strain at the same measuring point of the steel bar gradually decreases with the increase of the diameter of the steel bar, while the other parameters are opposite. The overall change trend of the strain at the same measuring point of the steel plate gradually increases with the increase of the width of the steel plate, while the other parameters are opposite. Along the direction from the test end to the fixed end, the tensile stress on the steel bar and the weld gradually decreases, and the tensile stress on the steel plate gradually increases. Along the transverse direction of the steel plate, the stress on the steel plate gradually decreases from its axis to both sides of the edge. The finite element simulation results are in good agreement with the test failure mode and load displacement curve, and the finite element simulation method is reliable.

References:

[1] ZHANG S M, LI X Z, LI J, et al. Behavior comparison of seven-types of steel-concrete composite stub columns under axial compression[J]. Engineering Structures, 2022, 252: 113637.
[2]YANG K H, SEO E A, HONG S H. Cyclic flexural tests of hybrid steel-precast concrete beams with simple connection elements[J]. Engineering Structures, 2016, 118: 344-356.
[3]YADAV R, CHEN B C, YUAN H H, et al. Effect of width of RC-web on seismic performance of CFST-RC pier: experiments[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2019, 43(4): 685-696.
[4]YADAV R, CHEN B C, YUAN H H, et al. Experimental investigation of CFST-RC bridge piers under cyclic loading[J]. Procedia Engineering, 2017, 173: 1723-1730.
[5]CHENG Y, YANG Y L, TENG Y, et al. Seismic performance of T-shaped CFST column to U-shaped steel-concrete composite beam joint[J]. Journal of Constructional Steel Research, 2022, 199: 107564.
[6]刘 剑,薛彦涛,王翠坤,等.钢-混凝土预制梁连接区段抗震性能试验研究[J].建筑结构学报,2021,42(3):50-62.
LIU Jian, XUE Yantao, WANG Cuikun, et al. Experimental study on seismic performance of connection zone of spliced precast steel-concrete beam[J]. Journal of Building Structures, 2021, 42(3): 50-62.
[7]张 敏,刘艳萍,邱秀丽,等.装配式混凝土U型钢筋环扣连接技术应用研究[J].建筑科学与工程学报,2022,39(1):14-24.
ZHANG Min, LIU Yanping, QIU Xiuli, et al. Application research on prefabricated concrete U-shaped reinforcement buckle connection technology[J]. Journal of Architecture and Civil Engineering, 2022, 39(1): 14-24.
[8]张锡治,李青正,章少华,等.钢-混凝土预制混合梁变形性能研究[J].工程力学,2019,36(6):193-201.
ZHANG Xizhi, LI Qingzheng, ZHANG Shaohua, et al. Study on the deformation performance of precast hybrid steel-concrete beams[J]. Engineering Mechanics, 2019, 36(6): 193-201.
[9]KIM S H, LEE C G, AHN J H, et al. Experimental study on joint of spliced steel-PSC hybrid girder, part I: proposed parallel-perfobond-rib-type joint[J]. Engineering Structures, 2011, 33(8): 2382-2397.
[10]KIM S H, LEE C G, KIM S J, et al. Experimental study on joint of spliced steel-PSC hybrid girder, part II: full-scale test of spliced hybrid I-girder[J]. Engineering Structures, 2011, 33(9): 2668-2682.
[11]焦安亮,冯大阔,张中善,等.装配式钢管混凝土柱-带钢接头钢筋混凝土梁节点抗震性能试验研究[J].建筑结构,2017,47(10):53-64.
JIAO Anliang, FENG Dakuo, ZHANG Zhongshan, et al. Experimental study on seismic behavior of nodes fabricated by concrete-filled steel tubular column and reinforced concrete beam with steel joints[J]. Building Structure, 2017, 47(10): 53-64.
[12]ZHANG X Z, ZHANG S H, NIU S X. Experimental studies on seismic behavior of precast hybrid steel-concrete beam[J]. Advances in Structural Engineering, 2019, 22(3): 670-686.
[13]张锡治,章少华,牛四欣,等.钢-混凝土预制混合梁受弯性能有限元分析[J].天津大学学报(自然科学与工程技术版),2018,51(增1):143-150.
ZHANG Xizhi, ZHANG Shaohua, NIU Sixin, et al. Finite element analysis of flexural behavior of precast hybrid steel-concrete beam[J]. Journal of Tianjin University(Science and Technology), 2018, 51(S1): 143-150.
[14]张锡治,章少华,牛四欣,等. 钢-混凝土预制混合梁受力性能分析[J]. 建筑结构学报,2019,40(4):47-55.
ZHANG Xizhi, ZHANG Shaohua, NIU Sixin, et al. Analysis on mechanical performance of precast hybrid steel-concrete beam[J]. Journal of Building Structures, 2019, 40(4): 47-55.
[15]朱伟庆,窦通宇,龙 刚,等.一种桥墩节段钢管混凝土更换结构:202321791974[P].2024-06-14.
ZHU Weiqing, DOU Tongyu, LONG Gang, et al. A concrete-filled steel tube replacement structure for pier segments: 202321791974[P]. 2024-06-14.
[16]朱伟庆,龙 刚,窦通宇,等.一种基于钢管混凝土连接的桥墩节段快速更换施工方法:CN116676890A[P].2023-09-01.
ZHU Weiqing, LONG Gang, DOU Tongyu, et al. A kind of rapid replacement construction method for bridge pier segment based on concrete-filled steel tube connection: 202310835287[P]. 2024-06-14.
[17]范 重,仕 帅,李振宝,等.大直径钢管混凝土柱-H形钢梁节点设计研究[J].建筑结构学报,2016,37(1):1-12.
FAN Zhong, SHI Shuai, LI Zhenbao, et al. Research on large diameter concrete filled tubular column and H-section beam connection[J]. Journal of Building Structures, 2016, 37(1): 1-12.
[18]黎威昱,朱礼敏,周 剑,等.新型装配整体式钢连接混合框架结构设计要点与工程应用[J].建筑结构,2023, 53(增1):1106-1112.
LI Weiyu, ZHU Limin, ZHOU Jian, et al. Key points and engineering application of new monolithic steel-connection precast hybrid beam-column frame structure[J]. Building Structure, 2023, 53(S1): 1106-1112.
[19]冯帅克,郭正兴,倪路瑶,等.钢管混凝土柱-混合梁节点抗震性能试验研究[J].浙江大学学报(工学版),2021,55(8):1464-1472.
FENG Shuaike, GUO Zhengxing, NI Luyao, et al. Experimental study on seismic performance of joints connecting concrete-filled steel tube columns and hybrid beams[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(8): 1464-1472.
[20]叶 勇,郭子雄,崔 俊,等.HRB500钢筋搭接焊接头抗拉性能试验研究[J].四川建筑科学研究,2013,39(2):31-35,43.
YE Yong, GUO Zixiong, CUI Jun, et al. Experimental research on tensile behavior of lap-welding joints of HRB500 steel bars[J]. Sichuan Building Science, 2013, 39(2): 31-35, 43.
[21]袁 彬,郭子雄.高强钢筋搭接焊缝的性能试验[J].华侨大学学报(自然科学版),2012,33(1):65-68.
YUAN Bin, GUO Zixiong. Experimental study on joint behavior of high-strength steel bar lap weld[J]. Journal of Huaqiao University(Natural Science), 2012, 33(1): 65-68.
[22]钢筋焊接及验收规程:JGJ 18—2012[S].北京:中国建筑工业出版社,2012.
Specification for welding and acceptance of reinforcing steel bars: JGJ 18—2012[S]. Beijing: China Architecture & Building Press, 2012.
[23]金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021.
Metallic materials — tensile testing: part 1: method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021.
[24]孙绍广,于秀娥,苏洪英,等.拉伸试验速率控制模式及试验速率的选择[J].理化检验(物理分册),2013,49(8):497-500.
SUN Shaoguang, YU Xiue, SU Hongying, et al. Rate control methods and rate selection for tensile test[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2013, 49(8): 497-500.
[25]吕 丹,苏洪英,杨承波,等.不同控制模式下拉伸试验速率的测试及方法比较[J].理化检验(物理分册),2012,48(1):47-51,54.
LÜ Dan, SU Hongying, YANG Chengbo, et al. Testing and method comparison of tensile testing rate in different control modes[J]. Physical Testing and Chemical Analysis(Part A: Physical Testing), 2012, 48(1): 47-51, 54.
[26]JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures[C]//ISB. Proceeding of the 7th International Symposium on Ballistics. Hague: ISB, 1983: 31-48.
[27]黄晓莹,陶俊林.三种建筑钢筋材料高应变率下拉伸力学性能研究[J].工程力学,2016,33(7):184-189.
HUANG Xiaoying, TAO Junlin. Tensile mechanical properties research of three construction steel bars in high strain rate[J]. Engineering Mechanics, 2016, 33(7): 184-189.
[28]辛春亮,朱星宇,薛再清,等.有限元分析常用材料参数手册[M].2版.北京:机械工业出版社, 2022.
XIN Chunliang, ZHU Xingyu, XUE Zaiqing, et al. Manual of common material parameters for finite element analysis[M]. 2nd ed. Beijing: China Machine Press, 2022.

Memo

Memo:
-
Last Update: 2025-06-01