[1] WEISS D. Advances in the sand casting of aluminium alloys[M]//LUMLEY R N. Fundamentals of Aluminium Metallurgy: Recent Advances. Cambridge: Woodhead Publishing, 2018: 159-171.
[2]YOU X H, XING Z Q, JIANG S W, et al. A review of research on aluminum alloy materials in structural engineering[J]. Developments in the Built Environment, 2024, 17: 100319.
[3]HU Z Q, WAN L, LU S L, et al. Research on the microstructure, fatigue and corrosion behavior of per-manent mold and die cast aluminum alloy[J]. Materials & Design, 2014, 55: 353-360.
[4]CHIBA R, YOSHIMURA M. Solid-state recycling of aluminium alloy swarf into C-channel by hot extrusion[J]. Journal of Manufacturing Processes, 2015, 17: 1-8.
[5]BAREKAR N S, DHINDAW B K. Twin-roll casting of aluminum alloys — an overview[J]. Materials and Manufacturing Processes, 2014, 29(6): 651-661.
[6]DAVIES C, BARNETT M. Expanding the extrusion limits of wrought magnesium alloys[J]. JOM, 2004, 56(5): 22-24.
[7]YAN W L, LIU X H, HUANG J Y, et al. Strength and ductility in ultrafine-grained wrought aluminum alloys[J]. Materials & Design, 2013, 49: 520-524.
[8]DOEGE E, DRODER K. Sheet metal forming of magnesium wrought alloys: formability and process technology[J]. Journal of Materials Processing Technology, 2001, 115(1): 14-19.
[9]HAMDY A S, DOENCH I, MOHWALD H. Intelligent self-healing corrosion resistant vanadia coating for AA2024[J].Thin Solid Films, 2011, 520(5): 1668-1678.
[10]BIRBILIS N, HINTON B. Corrosion and corrosion protection of aluminium[J]. Fundamentals of aluminium metallurgy, 2011: 574-604.
[11]CUI J R, ROVEN H J. Recycling of automotive aluminum[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(11): 2057-2063.
[12]WANG X H, WANG J H, FU C W. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3907-3916.
[13]LECLERE T J R, DAVENPORT A J, NEWMAN R C. Enhancement of localized corrosion in aluminum alloys by weak acids[J]. Corrosion, 2007, 63(4): 338-345.
[14]MUSA A Y, MOHAMAD A B, KADHUM A A H, et al. Galvanic corrosion of aluminum alloy(Al2024)and copper in 1.0 M nitric acid[J]. International Journal of Electrochemical Science, 2011, 6(10): 5052-5065.
[15]CAPUZZI S, TIMELLI G. Preparation and melting of scrap in aluminum recycling: a review[J]. Metals, 2018, 8(4): 249.
[16]SEVIGNE-ITOIZ E, GASOL C M, RIERADEVALL J, et al. Environmental consequences of recycling aluminum old scrap in a global market[J]. Resources, Conservation and Recycling, 2014, 89: 94-103.
[17]SUN Y. The use of aluminum alloys in structures: review and outlook[J]. Structures, 2023, 57: 105290.
[18]GEORGANTZIA E, GKANTOU M, KAMARIS G S. Aluminium alloys as structural material: a review of research[J]. Engineering Structures, 2021, 227: 111372.
[19]支新航,王元清,张 颖,等.低层铝合金框架结构的工程应用与研究进展[J].工程力学,2023,40(增1):46-55.
ZHI Xinhang, WANG Yuanqing, ZHANG Ying, et al. Engineering applications and research progress of low-rise aluminum alloy frames[J]. Engineering Mechanics, 2023, 40(S1): 46-55.
[20]杨联萍, 韦 申, 张其林.铝合金空间网格结构研究现状及关键问题[J].建筑结构学报,2013,34(2):1-19,60.
YANG Lianping, WEI Shen, ZHANG Qilin. Aluminum reticulated spatial structures: state of the art and key issues[J]. Journal of Building Structures, 2013, 34(2): 1-19, 60.
[21]张 颖,王元清,张俊光,等.铝合金网壳结构箱型-工字型盘式节点单肢受力性能有限元分析[J].工程力学,2020,37(增1):130-138.
ZHANG Ying, WANG Yuanqing, ZHANG Junguang, et al. Finite element analysis on mechanical performance of single-limbed box-I section member temcor joints in aluminum alloy spatial reticulated shell structures[J]. Engineering Mechanics, 2020, 37(S1): 130-138.
[22]郭小农,宗绍晗,成张佳宁,等.铝合金结构耐腐蚀性能研究现状简述[J].建筑钢结构进展,2021,23(6):1-12,60.
GUO Xiaonong, ZONG Shaohan, CHENG Zhangjianing, et al. State-of-the-art of the research on corrosion resistance of aluminum alloy structures[J]. Progress in Steel Building Structures, 2021, 23(6): 1-12, 60.
[23]李志强,刘小蔚,欧阳元文.拉斐尔云廊大跨度铝合金屋盖结构施工模拟分析与方案对比[J].建筑结构,2020,50(增2):146-149.
LI Zhiqiang, LIU Xiaowei, OUYANG Yuanwen. Construction simulation and program comparison on large-span aluminum alloy structure of Rafael roof[J]. Building Structure, 2020, 50(S2): 146-149.
[24]SU M N, YOUNG B, GARDNER L. Testing and design of aluminum alloy cross sections in compression[J]. Journal of Structural Engineering, 2014, 140(9): 04014047.
[25]WANG Y J, FAN F, LIN S B. Experimental investigation on the stability of aluminium alloy 6082 circular tubes in axial compression[J]. Thin-walled Structures, 2015, 89: 54-66.
[26]WANG Z X, WANG Y Q, SOJEONG J, et al. Experimental investigation and parametric analysis on overall buckling behavior of large-section aluminum alloy columns under axial compression[J]. Thin-walled Structures, 2018, 122: 585-596.
[27]钟昌均,冯若强,李虎阳.6A13-T6高强铝合金方形截面柱轴压性能研究[J].建筑结构学报,2024,45(12):213-222.
ZHONG Changjun, FENG Ruoqiang, LI Huyang. Study on axial compression behavior of 6A13-T6 high-strength aluminum alloy square section columns[J]. Journal of Building Structures, 2024, 45(12): 213-222.
[28]ADEOTI G O, FAN F, WANG Y J, et al. Stability of 6082-T6 aluminium alloy columns with H-section and rectangular hollow sections[J]. Thin-walled Structures, 2015, 89: 1-16.
[29]ZHAO Y Z, ZHAI X M, WANG J H. Buckling behaviors and ultimate strengths of 6082-T6 aluminum alloy columns under eccentric compression — part I: experiments and finite element modeling[J]. Thin-walled Structures, 2019, 143: 106207.
[30]JIANG S C, XIONG Z, GUO X N, et al. Buckling behaviour of aluminium alloy columns under fire conditions[J]. Thin-walled Structures, 2018, 124: 523-537.
[31]FENG R, LIU J R. Numerical investigation and design of perforated aluminium alloy SHS and RHS columns[J]. Engineering Structures, 2019, 199: 109591.
[32]FENG R, MOU X L, CHEN Z M, et al. Finite-element modelling and design guidelines for axial compressive capacity of aluminium alloy circular hollow sections with holes[J]. Thin-walled Structures, 2020, 157: 107027.
[33]RONG B, GUO Y, LI Z Y. Study on the stability behavior of 7A04-T6 aluminum alloy square and rectangular hollow section columns under axial compression[J]. Journal of Building Engineering, 2022, 45: 103652.
[34]ZHI X H, WANG Y Q, LI B B, et al. Axial compression behaviour of 7A04-T6 high-strength aluminium alloy SHS and RHS stub columns[J]. Thin-walled Structures, 2022, 180: 109816.
[35]李振宇,王衬心,李进军,等.7A04铝合金圆管构件轴压稳定性研究[J].天津大学学报(自然科学与工程技术版),2020,53(10):1036-1044.
LI Zhenyu, WANG Chenxin, LI Jinjun, et al. Stability of 7A04 aluminum alloy circular tubes under axial compression[J]. Journal of Tianjin University(Science and Technology), 2020, 53(10): 1036-1044.
[36]LI B B, WANG Y Q, ZHI X H, et al. Testing, modelling and design of 7A04-T6 high-strength aluminium alloy RHS columns under axial compression[J]. Journal of Building Engineering, 2022, 57: 104910.
[37]LI B B, WANG Y Q, ZHANG Y, et al. Flexural buckling of extruded high-strength aluminium alloy SHS columns[J]. Thin-walled Structures, 2022, 179: 109717.
[38]HU Y W, RONG B, ZHANG R Y, et al. Study of buckling behavior for 7A04-T6 aluminum alloy rectangular hollow columns[J]. Thin-walled Structures, 2021, 169: 108410.
[39]RONG B, ZHANG Y C, ZHANG S, et al. Experiment and numerical investigation on the buckling behavior of 7A04-T6 aluminum alloy columns under eccentric load[J]. Journal of Building Engineering, 2022, 45: 103625.
[40]吴 鹏.冻融循环作用后铝合金管混凝土轴心受压构件力学性能研究[D].重庆:重庆交通大学,2018.
WU Peng. Study on axial compression performance of concrete filled aluminum alloy tube columns after being exposed to freezing and thawing[D]. Chong-qing: Chongqing Jiaotong University, 2018.
[41]朱明权.高温后铝管混凝土中长柱受压力学性能研究[D].徐州:中国矿业大学,2023.
ZHU Mingquan. Study on compressive properties of concrete-filled aluminum tubular medium long columns after high temperature[D]. Xuzhou: China University of Mining and Technology, 2023.
[42]昌 魏.CFRP加强铝合金管-混凝土轴心受压短柱力学性能研究[D].重庆:重庆交通大学,2020.
CHANG Wei. Research on behavior of CFRP reinforced concrete filled aluminum alloy tube stub columns under axial compression[D].Chongqing: Chongqing Jiaotong University, 2020.
[43]武健锋.高温后铝管混凝土短柱轴心受压力学性能研究[D].徐州:中国矿业大学,2019.
WU Jianfeng. Study on axially compressive behavior of concrete-filled aluminum tube after exposure to high temperature[D]. Xuzhou: China University of Mining and Technology, 2019.
[44]ZHOU F, YOUNG B. Tests of concrete-filled aluminum stub columns[J].Thin-walled Structures, 2008, 46(6): 573-583.
[45]ZHOU F, YOUNG B. Concrete-filled aluminum circular hollow section column tests[J].Thin-walled Structures, 2009, 47(11): 1272-1280.
[46]高子豪.矩形铝合金管混凝土短柱轴压性能研究[D].沈阳:沈阳建筑大学,2021.
GAO Zihao. Study on axial compression performance of aluminum alloy tube concrete short rectangular column[D]. Shenyang: Shenyang Jianzhu University, 2021.
[47]曾 翔,吴晚博,霍静思,等.圆铝合金管混凝土短柱轴心受压承载力研究[J].工程力学,2021,38(2):52-60.
ZENG Xiang, WU Wanbo, HUO Jingsi, et al. The axial strength of concrete-filled aluminum alloy circular tubular stub columns[J].Engineering Mechanics, 2021, 38(2): 52-60.
[48]刘玉强.铝合金管(圆)混凝土轴压短柱力学性能试验研究[D].沈阳:沈阳建筑大学,2020.
LIU Yuqiang. Experimental study on mechanical properties of aluminum alloy tube(circular)concrete short columns under axial compression[D]. Shen-yang: Shenyang Jianzhu University, 2020.
[49]石 岩,张纪刚,王 涛,等.新型金属管混凝土短柱轴压性能试验研究[J].建筑结构,2022,52(3):110-115.
SHI Yan, ZHANG Jigang, WANG Tao, et al. Experimental study on the axial compression performance of a new type of metal tube concrete short column[J]. Building Structure, 2022, 52(3): 110-115.
[50]AL-MAZINI M A, CHKHEWIER A H. Behavior of concrete filled aluminum square and rectangular hollow section columns under axial loads: experimental and analytical study[J]. Engineering Sciences, 2017, 25(2): 712-726.
[51]JIANG M Y, SHU Q J, LIU P X, et al. Testing and numerical simulation of concrete-filled 6061-T6 aluminum tubular stub columns[J]. Structures, 2024, 60: 105855.
[52]YAN X F, LIN S Q, ZHAO Y G. Behaviour and confinement mechanism of circular concrete-filled aluminum alloy tubular stub columns under axial compression[J]. Marine Structures, 2024, 95: 103600.
[53]YAN X F, HE M N, HAO J P, et al. Theoretical model of circular concrete-filled aluminum alloy tubular short columns under axial compression[J]. Engineering Structures, 2024, 303: 117549.
[54]RONG B, ZHAI X, LI Z Y, et al. Study on axial compression behavior of 7A04-T6 concrete-filled aluminum tubular columns[J]. Journal of Building Engineering, 2023, 76: 107118.
[55]ZHANG Z J, HAN F X, LIU Q. Experimental and finite element study on 7A04 aluminum alloy tube confined high strength concrete long column[J]. Geofluids, 2022, 2022(1): 4692054.
[56]GKANTOU M, GEORGANTZIA E, KADHIM A, et al. Geopolymer concrete-filled aluminium alloy tubular cross-sections[J]. Structures, 2023, 51: 528-543.
[57]GULER S, YAVUZ D, AYDIN M. Hybrid fiber reinforced concrete-filled square stub columns under axial compression[J]. Engineering Structures, 2019, 198: 109504.
[58]GUO J H, WANG Y M, DENG Z H, et al. Research on the axial compression performance of coral concrete-filled aluminum alloy tube columns[J]. Case Studies in Construction Materials, 2024, 20: e02952.
[59]DENG Z H, GUO J H, YU J J, et al. Axial compression performance of coral concrete-filled aluminium tube(CCFAT)square stub columns[J]. Case Studies in Construction Materials, 2021, 15: e00697.
[60]HE Z Y, DENG Z H, HU S W, et al. Axial compression performance of coral concrete-filled aluminum alloy tube(CCFAT)circular short columns[J]. Engineering Structures, 2024, 303: 117552.
[61]ZHOU F, YOUNG B. Numerical analysis and design of concrete-filled aluminum circular hollow section columns[J]. Thin-walled Structures, 2012, 50(1): 45-55.
[62]DING F X, LIAO C B, WANG E, et al. Numerical investigation of the composite action of axially compressed concrete-filled circular aluminum alloy tubular stub columns[J]. Materials, 2021, 14(9): 2435.
[63]YAN X F, AHMED M, HE M N. Behavior and design of axially loaded high-strength concrete-filled circular aluminum tubular short columns[J]. Structures, 2022, 44: 357-371.
[64]WANG F C, ZHAO H Y, HAN L H. Analytical behavior of concrete-filled aluminum tubular stub columns under axial compression[J]. Thin-walled Structures, 2019, 140: 21-30.
[65]PATEL V I, LIANG Q Q, HADI M N S. Numerical simulations of circular high strength concrete-filled aluminum tubular short columns incorporating new concrete confinement model[J]. Thin-walled Structures, 2020, 147: 106492.
[66]YE Y, WANG L, ZHANG S J, et al. Compressive behavior of concrete-filled aluminum alloy tube(CFAAT)stub column with inner carbon steel tube[J]. Structures, 2021, 32: 701-712.
[67]ZHOU F, YOUNG B. Compressive strengths of concrete-filled double-skin(circular hollow section outer and square hollow section inner)aluminium tubular sections[J]. Advances in Structural Engineering, 2019, 22(11): 2418-2434.
[68]ZHOU F, YOUNG B. Concrete-filled double-skin aluminum circular hollow section stub columns[J]. Thin-walled Structures, 2018, 133: 141-152.
[69]PATEL V I, LIANG Q Q, HADI M N S. Numerical study of circular double-skin concrete-filled aluminum tubular stub columns[J]. Engineering Structures, 2019, 197: 109418.
[70]李 兵,田立明,周 博.中空夹层钢套铝管混凝土短柱轴压性能试验研究[J].建筑科学与工程学报,2023,40(6):35-44.
LI Bing, TIAN Liming, ZHOU Bo. Experimental study on axial compression performance of concrete short columns with hollow sandwich steel jacketed aluminum tubes[J]. Journal of Architecture and Civil Engineering, 2023, 40(6): 35-44.
[71]陈宗平,宋春梅,莫琳琳,等.铝合金管螺旋筋海水海砂混凝土短柱轴压性能及承载力计算[J].建筑结构学报,2024,45(2):136-147.
CHEN Zongping, SONG Chunmei, MO Linlin, et al. Axial compressive behavior and bearing capacity calculation of spirally reinforced seawater sea-sand concrete-filled aluminum alloy tube stub columns[J]. Journal of Building Structures, 2024, 45(2):136-147.
[72]CHEN Z P, XU W S, ZHOU J. Mechanical performance of marine concrete filled CFRP-aluminum alloy tube columns under axial compression: experiment and finite element analysis[J]. Engineering Structures, 2022, 272: 114993.
[73]GAO X F, ZHANG Z Y, XU J, et al. Mechanical behavior of CFRP confined seawater sea-sand recycled concrete-filled circular aluminum-alloy tube columns under axial compression[J]. Construction and Building Materials, 2023, 397: 132355.
[74]杨虓宇,蒋 华.CFRP约束铝合金圆管混凝土短柱轴压性能试验研究[J].建筑结构,2022,52(增2):1362-1368.
YANG Xiaoyu, JIANG Hua. Experimental research on axial compression performance of CFRP-confined concrete-filled circular aluminum alloy tube stub columns[J]. Building Structure, 2022, 52(S2): 1362-1368.
[75]王 兰,姜 航,谢文超,等.CFRP-铝合金复合管高强混凝土短柱轴压性能研究[J].建筑钢结构进展,2024,26(4):1-9.
WANG Lan, JIANG Hang, XIE Wenchao, et al. Axial compressive behavior of high-strength concrete-filled CFRP-aluminum composite tubular stub columns[J]. Progress in Steel Building Structures, 2024, 26(4): 1-9.
[76]CHENG C T, TANG C R, XIONG X, et al. Experimental study and numerical analysis on the axial compression performance of CFRP strip reinforced round-end aluminum alloy tube concrete column[J]. AIP Advances, 2024, 14(2): 025119.
[77]ZHAO D, ZHANG J G, LU L, et al. The strength in axial compression of aluminum alloy tube confined concrete columns with a circular hollow section: experimental results[J]. Buildings, 2022, 12(5): 699.
[78]何宗院.铝合金圆管珊瑚混凝土短柱受压性能试验研究[D].南宁:广西大学,2019.
HE Zongyuan. Experimental study on compressive behavior of aluminum alloy tubular coral concrete short column[D].Nanning: Guangxi University, 2019.
[79]MI Q X, SHU Q J, WANG F Y, et al. Experimental study on eccentric compressive behaviors of 6061-T6 aluminum tubular long columns filled with concrete[J]. Engineering Structures, 2024, 299: 117040.
[80]RONG B, ZHANG S, ZHANG Y C, et al. Study on the ultimate bearing capacity of 7A04-T6 CFAT columns under eccentric compression[J]. Journal of Building Engineering, 2022, 46: 103654.
[81]FENG R, CHEN Y, GONG W Z. Flexural behaviour of concrete-filled aluminium alloy thin-walled SHS and RHS tubes[J]. Engineering Structures, 2017, 137: 33-49.
[82]CHEN Y, FENG R, GONG W Z. Flexural behavior of concrete-filled aluminum alloy circular hollow section tubes[J]. Construction and Building Materials, 2018, 165: 173-186.
[83]GEORGANTZIA E, BIN ALI S, GKANTOU M, et al. Flexural buckling performance of concrete-filled aluminium alloy tubular columns[J]. Engineering Structures, 2021, 242: 112546.
[84]CUI G M, MENG L Z, ZHAI X M. Buckling behaviors of aluminum foam-filled aluminum alloy composite columns under axial compression[J].Thin-walled Structures, 2022, 177: 109399.
[85]ALI S, KAMARIS G S, GKANTOU M. Flexural buckling behaviour of concrete-filled double skin aluminium alloy columns[J]. Engineering Structures, 2023, 275: 115316.
[86]CHEN Y, FENG R, XU J. Flexural behaviour of CFRP strengthened concrete-filled aluminium alloy CHS tubes[J]. Construction and Building Materials, 2017, 142: 295-319.
[87]CHEN Z P, XU W S, LIANG Y H, et al. Flexural behavior of novel marine concrete filled CFRP-aluminum alloy tube member[J]. Structures, 2024, 62: 106184.
[88]ZHU Y, CHEN Y, HE K, et al. Flexural behavior of concrete-filled SHS and RHS aluminum alloy tubes strengthened with CFRP[J]. Composite Structures, 2020, 238: 111975.
[89]ALI S B, KAMARIS G S, GKANTOU M, et al. Concrete-filled and bare 6082-T6 aluminium alloy tubes under in-plane bending: experiments, finite element analysis and design recommendations[J]. Thin-walled Structures, 2022, 172: 108907.
[90]ALI S B, KAMARIS G S, GKANTOU M. Flexural behaviour of concrete-filled double skin aluminium alloy tubes[J]. Engineering Structures, 2022, 272: 114972.
[91]任子健.铝合金管混凝土桥墩抗震性能研究[D].徐州:中国矿业大学,2022.
REN Zijian. Research on seismic behavior of concrete filled aluminum alloy tube pier[D]. Xuzhou: China University of Mining and Technology, 2022.
[92]尹书昊.7A04铝合金圆管柱及圆管混凝土柱抗震性能研究[D].天津:天津大学,2020.
YIN Shuhao. Study on the seismic performance of 7A04 aluminum alloy circular tubes column and concrete filled aluminum alloy circular tubes column[D]. Tianjin: Tianjin University, 2020.
[93]钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014.
Technical code for concrete filled steel tubular structures: GB 50936—2014[S]. Beijing: China Architecture & Building Press, 2014.
[94]Building code requirements for structural concrete and commentary: ACI 318-19[S]. Farmington Hills: American Concrete Institute, 2019.