|Table of Contents|

Experimental study of mechanical characteristics of assembled concrete-filled steel tube brace(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年05期
Page:
55-65
Research Field:
建筑结构
Publishing date:

Info

Title:
Experimental study of mechanical characteristics of assembled concrete-filled steel tube brace
Author(s):
SHEN Peiwu12 OUYANG Dong3
(1. Wuhan Metro Group Co., Ltd., Wuhan 430070, Hubei, China; 2. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China; 3. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, Hubei, China)
Keywords:
assembled brace concrete-filled steel tube column flange joint uniaxial compression four-point bending
PACS:
TU375
DOI:
10.19815/j.jace.2024.02015
Abstract:
In order to study the mechanical characteristics of assembled concrete-filled steel tube brace, two groups of concrete-filled steel tube column specimens and three groups of flange joint specimens were designed. The uniaxial compression model test and numerical simulation of the column specimens and the four-point bending model test and numerical simulation of the joint specimens were carried out respectively. The economic index and carbon emission index were proposed to analyze the economic advantage and carbon emission advantage of assembled concrete-filled steel tube brace. The results show that tensile cracks appear in the end concrete and the steel tube at the end is buckled when the column specimen is destroyed. The transverse deformation of concrete is obviously inhibited by steel tube, and the increase of concrete thickness prolongates the compaction deformation stage and increases the residual strength. The damage areas are mainly concentrated on the tension side of stiffeners and the connected flange plates when joint specimens reach failure. The bottom bolts are subjected to great tensile stress in the deformation process of joint specimens, and reasonable design of joint type and loading position can effectively improve the bearing capacity of joint specimens. The numerical test result of each specimen is consistent with the model test result. On the basis of meeting design requirement, the combination form of “column specimen 1 and joint specimen 3 ”shows a lower operating cost, while the combination form of “column specimen 1 and joint specimen 2” shows a higher bearing capacity. Compared with assembled steel tube brace and cast-in-place steel-concrete brace, the economic advantage and carbon emission advantage of assembled concrete-filled steel tube brace become more obvious with the increase of usage count.

References:

[1] 徐昭辰,王 强,章定文,等.基坑混凝土支撑轴力监测值修正方法[J].建筑科学与工程学报,2021,38(6):48-54.
XU Zhaochen, WANG Qiang, ZHANG Dingwen, et al. Correction method of axial force monitoring value of concrete strut in excavation[J]. Journal of Architecture and Civil Engineering, 2021, 38(6): 48-54.
[2]陈国良,王源佑,查小君,等.钢筋混凝土支撑受力监测方法研究与应用[J].人民长江,2022,53(8):133-139.
CHEN Guoliang, WANG Yuanyou, ZHA Xiaojun, et al. Research and application of axial force monitoring method for reinforced concrete brace[J]. Yangtze River, 2022, 53(8): 133-139.
[3]王四清,陈 宇,艾辉军,等.基于性能的既有建筑防屈曲支撑抗震加固设计[J].建筑科学与工程学报,2021,38(2):38-46.
WANG Siqing, CHEN Yu, AI Huijun, et al. Performance-based seismic design for existing building reinforced with bucking restrained braces[J]. Journal of Architecture and Civil Engineering, 2021, 38(2): 38-46.
[4]XU L H, YAO S Q, SUN Y S. Development and validation tests of an assembly self-centering energy dissipation brace[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 120-129.
[5]ZHENG S Y, YUAN B, WEI M S, et al. Experimental & numerical investigation of all-steel assembled cruciform buckling-restrained braces[J]. Journal of Constructional Steel Research, 2023, 207: 107981.
[6]胡 彬,孙海旺.基坑钢混支撑拆除爆破技术[J].工程爆破,2020,26(5):57-61.
HU Bin, SUN Haiwang. Demolition blasting technology of reinforced concrete support in foundation pit[J]. Engineering Blasting, 2020, 26(5): 57-61.
[7]王 皓.地下车站装配式双H型钢支撑设计及应用[J].城市轨道交通研究,2023,26(9):74-79,88.
WANG Hao. Design and application of prefabricated double H-shaped steel struts in underground station[J]. Urban Mass Transit, 2023, 26(9): 74-79, 88.
[8]骆维斌,乔 雄,倪伟淋,等.隧道新型装配式临时支撑结构研发及技术研究[J].建筑科学与工程学报,2022,39(5):262-273.
LUO Weibin, QIAO Xiong, NI Weilin, et al. Development and technical research of new prefabricated temporary support structure for tunnel[J]. Journal of Architecture and Civil Engineering, 2022, 39(5): 262-273.
[9]BAI J L, CHEN H M, MA G, et al. Development of a four-tube-assembled buckling-restrained brace for convenient post-earthquake damage examination and replacement[J]. Journal of Building Engineering, 2022, 50: 104209.
[10]欧阳冬,罗会平,陈剑伟,等.装配式空心钢管混凝土支撑技术研究及应用[J].都市快轨交通,2023,36(4):107-113.
OUYANG Dong, LUO Huiping, CHEN Jianwei, et al. Technology and application of assembled hollow concrete-filled steel tubular struts[J]. Urban Rapid Rail Transit, 2023, 36(4): 107-113.
[11]ZHANG H M, QUAN L M, LU X L. Experimental hysteretic behavior and application of an assembled self-centering buckling-restrained brace[J]. Journal of Structural Engineering, 2022, 148(3): 0003287.
[12]TONG J Z, ZHANG E Y, GUO Y L, et al. Cyclic experiments and global buckling design of steel-angle-assembled buckling-restrained braces[J]. Bulletin of Earthquake Engineering, 2022, 20(10): 5107-5133.
[13]ZHENG S Y, YUAN B, WEI M S, et al. Experimental & numerical investigation of all-steel assembled cruciform buckling-restrained braces[J]. Journal of Constructional Steel Research, 2023, 207: 107981.
[14]SUN J B, PAN P, WANG H S. Development and experimental validation of an assembled steel double-stage yield buckling restrained brace[J]. Journal of Constructional Steel Research, 2018, 145: 330-340.
[15]钢纤维混凝土:JG/T 472—2015[S].北京:中国标准出版社,2015.
Steel fiber reinforced concrete: JG/T 472—2015[S]. Beijing: Standards Press of China, 2015.
[16]金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2010[S].北京:中国标准出版社,2011.
Metallic materials — tensile testing — part 1: method of test at room temperature: GB/T 228.1—2010[S]. Beijing: Standards Press of China, 2011.
[17]混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社,2019.
Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019.
[18]孙训方,方孝淑,关来泰.材料力学-Ⅰ[M].5版.北京:高等教育出版社,2009.
SUN Xunfang, FANG Xiaoshu, GUAN Laitai. Mechanics of materials[M]. 5th ed. Beijing: Higher Education Press, 2009.
[19]丁发兴,余志武,欧进萍.混凝土单轴受力损伤本构模型[J].长安大学学报(自然科学版),2008,28(4):70-73.
DING Faxing, YU Zhiwu, OU Jinping. Damage constitutive model for concrete under uniaxial stress conditions[J]. Journal of Chang'an University(Natural Science Edition), 2008, 28(4): 70-73.
[20]钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2017.
Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017.
[21]钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014.
Technical code for concrete filled steel tubular structures: GB 50936—2014[S]. Beijing: China Architecture & Building Press, 2014.
[22]俞海勇,王 琼,张 贺,等.基于全寿命周期的预拌混凝土碳排放计算模型研究[J].粉煤灰,2011,23(6):42-46.
YU Haiyong, WANG Qiong, ZHANG He, et al. Service life period-based carbon emission computing model for ready-mix concrete[J]. Coal Ash, 2011, 23(6): 42-46.
[23]刘宏强,付建勋,刘思雨,等.钢铁生产过程二氧化碳排放计算方法与实践[J].钢铁,2016,51(4):74-82.
LIU Hongqiang, FU Jianxun, LIU Siyu, et al. Calculation methods and application of carbon dioxide emission during steel-making process[J]. Iron & Steel, 2016, 51(4): 74-82.

Memo

Memo:
-
Last Update: 2025-09-25