|Table of Contents|

Simulation analysis of fluctuation characteristics of underwater perfusion seal bottom of large diameter caisson(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年05期
Page:
200-208
Research Field:
岩土工程
Publishing date:

Info

Title:
Simulation analysis of fluctuation characteristics of underwater perfusion seal bottom of large diameter caisson
Author(s):
JIAN Wenhao12 SHI Wenhao12 DENG Wei13 WANG Yuan12 FAN Lyuye24
(1. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, Jiangsu, China; 2. Kunshan Underground Space Technology Research Institute Co., Ltd, Suzhou 215337, Jiangsu, China; 3. CSCEC International Construction Co., Ltd. Suzhou 215000, Jiangsu, China; 4. Kunshan Construction Engineering Quality Inspection Center Co., Ltd, Suzhou 215337, Jiangsu, China)
Keywords:
large diameter caisson fluctuation characteristic of seal bottom numerical simulation underwater concrete perfusion
PACS:
TU943
DOI:
10.19815/j.jace.2023.11063
Abstract:
In order to address the problem of underwater concrete perfusion seal bottom of caisson, relying on the caisson project of underground silo parking garage in Kunshan Forest Park, a numerical model of underwater concrete perfusion of caisson was constructed based on the discrete element method of PFC, and the process of underwater concrete perfusion seal bottom of caisson was simulated. By introducing the relative fluctuation parameter, the fluctuation characteristics of seal bottom layer were quantitatively analyzed, and the influence laws of conduit arrangement scheme, height of groundwater table, and temperature of groundwater on the fluctuation characteristics of seal bottom layer were revealed. The results show that it is feasible to simulate the concrete bottoming process by gradually raising conduit method during underwater perfusion. Under the same condition, the denser the conduit arrangement is, the smaller the relative fluctuation of seal bottom layer is, and the less obvious the fluctuation characteristics are. The higher the groundwater table is, the greater the fluctuation of seal bottom layer is, the lower the water level is, and the more uniform the seal bottom layer is. Within the allowable scope of project, appropriately lowering the groundwater table is helpful to reduce the relative fluctuation of seal bottom. The change of groundwater temperature has a small influence on the relative fluctuation of seal bottom layer.

References:

[1] 张振光,徐 杰,汪 盛,等.富水地层超深装配式竖井水下机械法掘进施工技术:以南京某沉井式停车设施建设项目为例[J].隧道建设(中英文),2022,42(3):492-500.
ZHANG Zhenguang, XU Jie, WANG Sheng, et al. Underwater mechanical tunneling technology of an ultra-deep assembled shaft in water-rich stratum: a case study of sinking shaft underground parking garage in Nanjing, China[J]. Tunnel Construction, 2022, 42(3): 492-500.
[2]姜 弘,包鹤立,林咏梅.装配式竖井设计与施工技术应用研究:以南京某沉井式地下车库项目为例[J].隧道建设(中英文),2022,42(3):463-470.
JIANG Hong, BAO Heli, LIN Yongmei. Research and application of design and construction technology of assembled shaft: a case study of a sinking shaft underground parking garage in Nanjing, China[J]. Tunnel Construction, 2022, 42(3): 463-470.
[3]LUO S. Research and application of anti-floating schemes of deep foundation pit of subway for underwater excavation and underwater concrete sealing[J]. E3S Web of Conferences, 2020, 165: 04001.
[4]付小莲,徐 芸.郁江特大桥深水基础钢围堰水下封底施工技术[J].世界桥梁,2014,42(3):30-33.
FU Xiaolian, XU Yun. Construction technique of underwater bottom sealing for deepwater foundation steel cofferdam of Yujiang River bridge[J]. World Bridges, 2014, 42(3): 30-33.
[5]张广涛.超厚粉细砂地层大面积围堰水下封底施工技术[J].施工技术,2018,47(5):30-33.
ZHANG Guangtao. Underwater subsealing construction technology of steel cofferdam with large area in super thick sand stratum[J]. Construction Technology, 2018, 47(5): 30-33.
[6]夏志强,张 帆,周小华,等.钢吊箱水下封底施工关键问题总结[J].公路交通科技(应用技术版),2014(4):222-224.
XIA Zhiqiang, ZHANG Fan, ZHOU Xiaohua, et al. Summary of key issues in the construction of underwater bottom sealing for steel hanging box[J]. Journal of Highway and Transportation Research and Development, 2014(4): 222-224.
[7]朱 浩,杨 切.常泰长江大桥超大水下钢沉井终沉及封底关键技术[J].铁道建筑,2022,62(6):87-92.
ZHU Hao, YANG Qie. Key technologies of final settlement and bottom sealing of super large underwater steel caisson of Changzhou-Taizhou Yangtze River bridge[J]. Railway Engineering, 2022, 62(6): 87-92.
[8]宋建禹.临江高承压水超深基坑支护方案研究[J].隧道建设(中英文),2018,38(9):1529-1537.
SONG Jianyu. Structural design scheme for super-deep foundation pit with high-pressure water adjacent to Minjiang River in Fujian[J]. Tunnel Construction, 2018, 38(9): 1529-1537.
[9]帅玉兵,丘锦润,李鹏飞,等.盾构隧道内机械法施工竖井泵房封底试验与数值模拟研究[J].隧道建设(中英文),2022,42(增1):128-135.
SHUAI Yubing, QIU Jinrun, LI Pengfei, et al. Experimental study and numerical simulation of bottom sealing of shaft pump room in shield tunnel constructed by mechanical method[J]. Tunnel Construction, 2022, 42(S1): 128-135.
[10]尚 桌,葛忻声,王菁悦,等.深基坑水平封底在富水深厚砂层的加固效果[J].太原理工大学学报,2022,53(4):786-792.
SHANG Zhuo, GE Xinsheng, WANG Jingyue, et al. Reinforcement effect of horizontal bottom sealing of deep foundation pit in water-rich and deep sand layer[J]. Journal of Taiyuan University of Technology, 2022, 53(4): 786-792.
[11]晏 莉,杨海涛,崔云龙,等.富水粉砂地层深基坑底部注浆加固数值模拟分析[J].水利水电科技进展,2022,42(4):80-86,102.
YAN Li, YANG Haitao, CUI Yunlong, et al. Numerical simulation analysis of grouting reinforcement at bottom of a deep foundation pit in water-rich silt stratum[J]. Advances in Science and Technology of Water Resources, 2022, 42(4): 80-86, 102.
[12]林呈祥,凌道盛,钟世英.颗粒流数值模拟在月壤岩土问题研究中的应用概况[J].浙江大学学报(工学版),2015,49(9):1679-1691.
LIN Chengxiang, LING Daosheng, ZHONG Shi-ying. Application of particle flow code numerical simulation in research of geotechnical behavior of lunar soil[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(9): 1679-1691.
[13]周 健,苏 燕,池 永. 颗粒流模拟土的工程特性[J]. 岩土工程学报, 2006,28(3): 390-396.
ZHOU Jian, SU Yan, CHI Yong. Simulation of soil properties by particle flow code[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(3): 390-396.
[14]彭岩岩,刘宇航,王天佐,等.数值模拟实验在岩土工程中的应用与展望[J].绍兴文理学院学报(自然科学),2018,38(8):39-44.
PENG Yanyan, LIU Yuhang, WANG Tianzuo, et al. Application and prospect of numerical simulation experiment in geotechnical engineering[J]. Journal of Shaoxing University(Natural Science), 2018, 38(8): 39-44.
[15]CHEN Z, SONG D Q. Numerical investigation of the recent Chenhecun landslide(Gansu, China)using the discrete element method[J]. Natural Hazards, 2021, 105(1): 717-733.
[16]王泽华,李 昺,邢 磊,等.基于PFC3D的滑坡与建筑物相互作用过程研究[J].安全与环境工程,2023,30(1):107-118,191.
WANG Zehua, LI Bing, XING Lei, et al. Research on the interaction process between landslides and buildings based on PFC3D[J]. Safety and Environmental Engineering, 2023, 30(1): 107-118, 191.
[17]ZHONG K Z, FAN J W, HUANG X M, et al. Discrete element simulation on anti-rutting performance of PAC-13 pavement in urban roads[J]. Materials and Structures, 2022, 55(4): 117.
[18]黄平明,潘旭鹏,牛艳伟,等.基于离散元的钢筋混凝土梁极限承载力研究[J].工程力学,2022,39(10):215-226.
HUANG Pingming, PAN Xupeng, NIU Yanwei, et al. Research on ultimate bearing capacity of reinforced concrete beam based on discrete element method[J]. Engineering Mechanics, 2022, 39(10): 215-226.

Memo

Memo:
-
Last Update: 2025-09-25