|Table of Contents|

Study on bond-slip behavior of steel tube alkali-activated concrete composite columns(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年06期
Page:
77-86
Research Field:
建筑结构
Publishing date:

Info

Title:
Study on bond-slip behavior of steel tube alkali-activated concrete composite columns
Author(s):
REN Zhigang XU Tianen LI Qi FENG Yixuan
(School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, Hubei, China)
Keywords:
alkali-activated concrete composite column load-slip curve push-out test bond performance
PACS:
TU398.9
DOI:
10.19815/j.jace.2024.02022
Abstract:
In order to study the interfacial bond performance of steel tube alkali-activated concrete composite columns, 10 specimens of steel tube alkali-activated concrete composite columns were subjected to pull-out tests to analyze the effects of steel fiber volume ratio, steel tube area ratio, and volume stirrup reinforcement ratio on the interfacial bond performance of steel tube alkali-activated concrete composite columns. During the experimental loading process, the crack development and failure mode of the specimen were carefully observed, and the load-slip curve of the specimen was obtained. By analyzing and classifying the load-slip curve, the typical forms of load-slip curves was summarized. The impact law of various changing parameters on the characteristic bond strength were analyzed in-depth, and a formula for calculating the characteristic bond strength using grey correlation theory was established. The results show that the overall integrity of the test specimen after pull-out test is relatively complete, with no obvious cracks on the external concrete surface, and some damage to the loading ends section concrete. The typical load-slip curve is divided into three categories. The characteristic bond strength increases with the increase of steel fiber volume ratio and volume stirrup reinforcement ratio. The residual bond strength decreases with the increase of steel tube area ratio, and there exists an optimal range of cross-sectional dimensions to achieve the maximum ultimate bond strength. Grey correlation theory can better reflect the relationship between characteristic bond strength and various influencing factors, among which the correlation between steel fiber volume ratio and ultimate bond strength is the strongest, and the correlation between steel tube area ratio and residual bond strength is the strongest.

References:

[1] HAN L H, WANG Z B, XU W, et al. Behavior of concrete-encased CFST members under axial tension[J]. Journal of Structural Engineering, 2016, 142(2): 04015149.
[2]郑文忠,侯晓萌,王 英.混凝土及预应力混凝土结构抗火研究现状与展望[J].哈尔滨工业大学学报,2016,48(12):1-18.
ZHENG Wenzhong, HOU Xiaomeng, WANG Ying. Progress and prospect of fire resistance of reinforced concrete and prestressed concrete structures[J]. Journal of Harbin Institute of Technology, 2016, 48(12): 1-18.
[3]何越纪,张雪松,陈金平.钢筋混凝土材料及结构耐久性研究综述[J].粉煤灰综合利用,2021,35(3):83-87.
HE Yueji, ZHANG Xuesong, CHEN Jinping. Review of research on durability of reinforced concrete materials and structures[J]. Fly Ash Comprehensive Utilization, 2021, 35(3): 83-87.
[4]钢管混凝土叠合柱结构技术规程:T/CECS 188—2019[S].北京:中国建筑工业出版社,2020.
Technical specification for steel tube-reinforced concrete column structures: T/CECS 188—2019[S]. Beijing: China Architecture & Building Press, 2020.
[5]林立岩,李庆钢.钢管混凝土叠合柱的设计概念与技术经济性分析[J].建筑结构,2008,38(3):17-21,41.
LIN Liyan, LI Qinggang. Design concept and analysis of technical economy for steel tube-reinforced concrete column[J]. Building Structure, 2008, 38(3): 17-21, 41.
[6]MCLELLAN B C, WILLIAMS R P, LAY J,et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement[J]. Journal of Cleaner Production, 2011, 19(9/10): 1080-1090.
[7]DAVIDOVITS J. Geopolymers of the first generation: siliface-process[J]. Geopolymer, 1988, 88(1): 49-67.
[8]PALOMO A, GRUTZECK M W, BLANCO M T. Alkali-activated fly ashes: a cement for the future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329.
[9]王 昕,颜碧兰,刘 晨,等.多元钙质和硅铝质工业废渣复合激发磷渣活性的研究[J].北京工业大学学报,2009,35(9):1258-1266.
WANG Xin, YAN Bilan, LIU Chen, et al. Complex calcium and silicate-aluminates industry wastes combined active phosphorous slag[J]. Journal of Beijing University of Technology, 2009, 35(9): 1258-1266.
[10]陈 明,孙振平,刘建山.磷渣活性激发方法及机理研究进展[J].材料导报,2013,27(21):112-116.
CHEN Ming, SUN Zhenping, LIU Jianshan. State of the art review on activating techniques and mechanism of phosphorus slag[J]. Materials Review, 2013, 27(21): 112-116.
[11]彭小芹,刘 朝,李 三,等.碱激发钢渣矿渣胶凝材料凝结硬化性能研究[J].湖南大学学报(自然科学版),2015,42(6):47-52.
PENG Xiaoqin, LIU Chao, LI San, et al. Research on the setting and hardening performance of alkali-activated steel slag-slag based cementitious materials[J]. Journal of Hunan University(Natural Sciences), 2015, 42(6): 47-52.
[12]徐金金,杨树桐,刘治宁.碱激发矿粉海水海砂混凝土与CFRP筋粘结性能研究[J].工程力学,2019,36(增1):175-183.
XU Jinjin, YANG Shutong, LIU Zhining. Study on the bond performance between CFRP bars and alkali-activated slag seawater and sea sand concrete[J]. Engineering Mechanics, 2019, 36(S1): 175-183.
[13]项 凯,潘雁翀,宋天诣.钢管混凝土叠合短柱高温后黏结滑移性能试验研究[J].建筑结构学报,2019,40(增1):149-155.
XIANG Kai, PAN Yanchong, SONG Tianyi. Experimental study on bond-slip behavior of concrete-encased concrete-filled steel tubular stub columns after high temperature[J]. Journal of Building Structures, 2019, 40(S1): 149-155.
[14]钱稼茹,赵作周,纪晓东.钢管与管外混凝土界面粘结抗剪能力试验研究[J].建筑结构,2015,45(3):12-16.
QIAN Jiaru, ZHAO Zuozhou, JI Xiaodong. Test study on shear-bond capacity of steel tube-out of tube concrete interface[J]. Building Structure, 2015, 45(3): 12-16.
[15]混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社,2019.
Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019.
[16]金属材料 拉伸试验 第1部分:室温试验方法:GB/T 228.1—2021[S].北京:中国标准出版社,2021.
Metallic materials — tensile testing: part 1: method of test at room temperature: GB/T 228.1—2021[S]. Beijing: Standards Press of China, 2021.
[17]张凤维.钢筋与混凝土高温粘结性能研究[D].长沙:中南大学,2008.
ZHANG Fengwei. Study on bond performance between rebar and concrete under high temperature[D]. Changsha: Central South University, 2008.
[18]傅 立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
FU Li. Grey system theory and its application[M]. Beijing: Scientific and Technical Documents Publishing House, 1992.
[19]邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,1987.
DENG Julong. Basic methods of grey system[M]. Wuhan: Huazhong University of Science and Technology Press, 1987.
[20]周秀文.灰色关联度的研究与应用[D].长春:吉林大学,2007.
ZHOU Xiuwen. The study on the grey relational degree and its application[D]. Changchun: Jilin University, 2007.
[21]杨 磊.型钢-ECC粘结滑移机理试验研究及有限元分析[D].西安:长安大学,2021.
YANG Lei. Experimental investigation and finite element analysis on bond slip mechanism between shape steel and ECC[D]. Xi'an: Chang'an University, 2021.
[22]陈宗平,应武挡.型钢高强混凝土界面黏结滑移推出试验及其本构关系研究[J].建筑结构学报,2016,37(2):150-157.
CHEN Zongping, YING Wudang. Push-out test on interface bond behavior between shape steel and high-strength concrete and interfacial bond-slip constitutive relation[J]. Journal of Building Structures, 2016, 37(2): 150-157.

Memo

Memo:
-
Last Update: 2025-11-25