|Table of Contents|

Experiment on Ultimate Bearing Capacity of Self-balancing Cross Beam Foundation with Single Pile in Narrow-base Tower(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2021年03期
Page:
30-42
Research Field:
Publishing date:

Info

Title:
Experiment on Ultimate Bearing Capacity of Self-balancing Cross Beam Foundation with Single Pile in Narrow-base Tower
Author(s):
ZHENG Xiang-feng1 YANG Chui-wei1 ZHAO Teng-fei2 HUANG Mo-jia3
(1. China Energy Engineering Group Anhui Electric Power Design Institute Co., Ltd., Hefei 230601, Anhui, China; 2. College of City Construction, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; 3. Department of Engineering Mechanics, Nanchang University, Nanchang 330031, Jiangxi, China)
Keywords:
narrow-base tower single pile cross beam new foundation full scale test nonlinear analysis
PACS:
TU323
DOI:
10.19815/j.jace.2020.04001
Abstract:
A new type of narrow base tower foundation(self-balancing cross beam foundation with single pile)with simple structure, good overall performance, fast construction and appropriate economic benefit was proposed. Based on full-scale test and numerical simulation, the mechanical characteristics and failure mode of the new foundation were studied. The nonlinear finite element model of soil-concrete-reinforcement was established. Considering the nonlinear contact between soil and concrete, the load-unload analysis of the model was carried out, and the results were compared with the test results. Through the analysis, the ultimate bearing capacity of the new foundation was obtained, and the failure form, the weak position and the reinforcement stress of the new foundation under the load were obtained. The results show that the load-displacement curve of the finite element model, the change curve of the axial force of the main reinforcement and crack development of the cross beam foundation are in good agreement with the test results. The load-displacement curve is basically of slow change or linear. The axial force of the main reinforcement of the cross beam has the maximum tensile stress at the position about 0.5 m from the bottom of the cross beam on the uplift side. There is a maximum compressive stress at the interface between the cross beam and the pile on the compression side. The maximum tensile stress of the main reinforcement of single pile is about 1.95 m away from the pile top, and the maximum compressive stress is about 0.94 m away from the pile top. The cracks of the cross beam begin to develop from the lower side of the cross beam root, the tensile reinforcement yields, and the concrete in the compression zone is damaged. The research can provide the basis for the design of the new foundation.

References:

[1] 廖永昌.浅谈500 kV输电线路铁塔基础选型与设计[J].广东科技,2013(24):118-120.
LIAO Yong-chang.Foundation Selection and Design of Tower for 500 kV Transmission Line[J].Guangdong Science & Technology,2013(24):118-120.
[2]林智伟.输电线路铁塔基础设计的实践[J].中国新技术新产品,2018(17):84-85.
LIN Zhi-wei.Practice of Transmission Line Tower Foundation Design[J].New Technology & New Products of China,2018(17):84-85.
[3]唐凯亮.考虑临近高压电塔稳定性的基坑支护分析[D].湘潭:湘潭大学,2017.
TANG Kai-liang.Analysis of Foundation Pit Support Considering Stability of Nearly High Voltage Tower[D].Xiangtan:Xiangtan University,2017.
[4]鲁先龙,程永锋.我国输电线路基础工程现状与展望[J].电力建设,2005,26(11):25-27.
LU Xian-long,CHENG Yong-feng.Current Status and Prospect of Transmission Tower Foundation Engineering in China[J].Electric Power Construction,2005,26(11):25-27.
[5]程永锋,邵晓岩,朱全军.我国输电线路基础工程现状及存在的问题[J].电力建设,2002,23(3):32-34.
CHENG Yong-feng,SHAO Xiao-yan,ZHU Quan-jun.Current Situation of Foundation Works and Existing Problems for Transmission Lines in China[J].Electric Power Construction,2002,23(3):32-34.
[6]陈 榕,高宇聪,孟宪彬,等.我国输电线路基础形式对比及其适用性分析[J].东北电力大学学报,2015,35(6):77-85.
CHEN Rong,GAO Yu-cong,MENG Xian-bin,et al.Comparison and Applicability Analysis for Foundation Types of Transmission Tower in China[J].Journal of Northeast Dianli University,2015,35(6):77-85.
[7]张风虎.高压输电线路工程杆塔基础形式及质量控制[J].山西建筑,2011,37(7):218-219.
ZHANG Feng-hu.Tower Foundation and Quality Control for High-voltage Transmission Line Laying Projects[J].Shanxi Architecture,2011,37(7):218-219.
[8]李海林.山区高压输电线路设计中常用基础形式的选择和应用[J].企业技术开发,2018,37(6):50-52.
LI Hai-lin.Selection and Application of the Basic Forms Commonly Used in the Design of High Voltage Transmission Lines in Mountainous Areas[J].Technological Development of Enterprise,2018,37(6):50-52.
[9]闫芳芳,张 斌,王 婼.输电线路基础形式选择及优化[J].电气传动自动化,2018,40(6):57-60.
YAN Fang-fang,ZHANG Bin,WANG Ruo.Selection and Optimization of Transmission Line Foundation Forms[J].Electric Drive Automation,2018,40(6):57-60.
[10]方 兵.输电线路基础形式的选择[J].科技风,2012(21):135.
FANG Bing.Selection of Transmission Line Foundation Form[J].Technology Wind,2012(21):135.
[11]范正根,曾文海.夯扩桩基快速复测法[J].测绘通报,2008(10):41-42,64.
FAN Zheng-gen,ZENG Wen-hai.Rapid Repetition Measurement for Tamp Extended File Foundation[J].Bulletin of Surveying and Mapping,2008(10):41-42,64.
[12]黄冬平.风电场架空电力线路杆塔拉线锚杆基础设计及试验[J].建筑结构,2019,49(16):140-142,54.
HUANG Dong-ping.Design and Test of Cable Anchor Foundation of Overhead Power Line Tower for Wind Farm[J].Building Structure,2019,49(16):140-142,54.
[13]韩丽婷,王 贵,张大长,等.输电铁塔桩-板复合基础上拔承载力特性试验及理论分析[J].建筑结构学报,2018,39(增1):337-343.
HAN Li-ting,WANG Gui,ZHANG Da-chang,et al.Experimental Study and Theoretical Analysis on Uplift Capacity of a New Plate-pile Foundation in Transmission Steel Towers[J].Journal of Building Structures,2018,39(S1):337-343.
[14]孙慧中,沈文都,陈才华,等.型钢混凝土偏心受压构件正截面受压承载力计算方法及试验验证[J].建筑结构,2019,49(19):136-140,82.
SUN Hui-zhong,SHEN Wen-du,CHEN Cai-hua,et al.Calculating Method and Experimental Verification of Normal Section Compressive Bearing Capacity of Steel Reinforced Concrete Eccentric Compression Members[J].Building Structure,2019,49(19):136-140,82.
[15]任宗栋,秦 玮,默增禄,等.岩石扩底锚桩基础试验及应用[J].电力建设,2011,32(10):34-37.
REN Zong-dong,QIN Wei,MO Zeng-lu,et al.Experiment and Application on Belled Rock-anchor Pile Foundation[J].Electric Power Construction,2011,32(10):34-37.
[16]秦庆芝,毛彤宇,刘学军,等.华北地区岩石锚杆基础设计及试验研究[J].电力建设,2007,28(4):22-24,33.
QIN Qing-zhi,MAO Tong-yu,LIU Xue-jun,et al.Design and Experiment Study of Rock Bolt Foundation in North China[J].Electric Power Construction,2007,28(4):22-24,33.
[17]麻 坚,袁建国,应 健,等.山区输电线路转角塔压力型锚索承台基础研究[J].浙江电力,2019,38(7):53-57.
MA Jian,YUAN Jian-guo,YING Jian,et al.Study of Pressure-type Anchor Cable Platform Foundation for Corner Tower of Transmission Line in Mountainous Area[J].Zhejiang Electric Power,2019,38(7):53-57.
[18]张明熠,吕兆华,杨建波.软土弯剪作用下大直径刚性桩水平承载性能试验[J].同济大学学报:自然科学版,2016,44(8):1166-1172,1189.
ZHANG Ming-yi,LÜ Zhao-hua,YANG Jian-bo.Experiment on Lateral Load Capacities of Large-diameter Rigid Pile Against Toppling Moment and Shear Forces Under Soft Soil Site Conditions[J].Journal of Tongji University:Natural Science,2016,44(8):1166-1172,1189.
[19]朱照清,龚维明,戴国亮.大直径钢管桩水平承载力现场试验研究[J].建筑科学,2010,26(9):36-39,32.
ZHU Zhao-qing,GONG Wei-ming,DAI Guo-liang.Field Test Research of Horizontal Bearing Capacity of Large Diameter Steel Pipe Pile[J].Building Science,2010,26(9):36-39,32.
[20]朱 斌,杨永垚,余振刚,等.海洋高桩基础水平单调及循环加载现场试验[J].岩土工程学报,2012,34(6):1028-1037.
ZHU Bin,YANG Yong-yao,YU Zhen-gang,et al.Field Tests on Lateral Monotonic and Cyclic Loadings of Offshore Elevated Piles[J].Chinese Journal of Geotechnical Engineering,2012,34(6):1028-1037.
[21]刘梅梅.海上风机复合筒型基础承载力及优化设计研究[D].天津:天津大学,2014.
LIU Mei-mei.Bearing Capacity and Optimization Design of Composite Bucket Foundation for Offshore Wind Turbine[D].Tianjin:Tianjin University,2014.
[22]刘永刚.海上风力发电复合筒型基础承载特性研究[D].天津:天津大学,2014.
LIU Yong-gang.Bearing Characteristics of Composite Bucket Foundation for Offshore Wind Turbine[D].Tianjin:Tianjin University,2014.
[23]王旭月.海上风电复合筒型基础结构动力特性研究[D].天津:天津大学,2017.
WANG Xu-yue.Research on Dynamic Characteristics of Composite Bucket Foundation for Offshore Wind Turbine[D].Tianjin:Tianjin University,2017.
[24]刘 润,祁 越,李宝仁,等.复合加载模式下单桩复合筒型基础地基承载力包络线研究[J].岩土力学,2016,37(5):1486-1496.
LIU Run,QI Yue,LI Bao-ren,et al.Failure Envelopes of Single-pile Composite Bucket Foundation of Offshore Wind Turbine Under Combined Loading Conditions[J].Rock and Soil Mechanics,2016,37(5):1486-1496.
[25]郭文兵,雍 强.采动影响下高压线塔与地基、基础协同作用模型研究[J].煤炭学报,2011,36(7):1075-1080.
GUO Wen-bing,YONG Qiang.Study on the Synergy Acting Model of High Voltage Power Transmission Lines Tower,Groundwork and Foundation Influenced by Mining[J].Journal of China Coal Society,2011,36(7):1075-1080.
[26]邓 骁.输电塔联合板索基础设计研究[D].兰州:兰州大学,2014.
DENG Xiao.Research on the Design About the Joint Board Cable Transmission Tower Foundation[D].Lanzhou:Lanzhou University,2014.
[27]刘 岩.砂土地基索联板球基础设计计算方法研究[D].兰州:兰州大学,2017.
LIU Yan.The Research of Computing Method and Design for Cable Linking with Slabs-globe Foundation in the Sandy Region[D].Lanzhou:Lanzhou University,2017.
[28]刘 林.软土地基输电塔小型预制桩的承载特性研究及数值分析[D].广州:华南理工大学,2016.
LIU Lin.The Study and the Numerical Analysis of The Bearing Capacity of the Small Precast Pile of Transmission Tower in Soft Soil[D].Guangzhou:South China University of Technology,2016.
[29]王 冬.开采沉陷区输电塔基新型加固锚杆研制及力学特性研究[D].北京:中国矿业大学(北京),2015.
WANG Dong.Research on Development and Mechanical Property of New-type Reinforced Bolt Applied in Transmission Tower Foundation in Mining Subsidence Area[D].Beijing:China University of Mining and Technology-Beijing,2015.
[30]孟建文.砂土地基输电塔基础设计研究[D].兰州:兰州大学,2016.
MENG Jian-wen.Research on the Design About Transmission Tower Foundations of the Sandy Soil Foundation[D].Lanzhou:Lanzhou University,2016.
[31]王 朋.螺栓滑移对基础非均匀沉降输电塔的影响研究[D].合肥:中国科学技术大学,2014.
WANG Peng.Research on the Effect of Bolt Slippage on the Transmission Tower with Non-uniform Settlement[D].Hefei:University of Science and Technology of China,2014.
[32]窦 谈.采动区输电铁塔预置可顶升塔脚及基础承载性能研究[D].徐州:中国矿业大学,2016.
DOU Tan.Study on the Load of the Preset Lifting Tower Foot and Foundation of Power Transmission Tower in Mining Area[D].Xuzhou:China University of Mining and Technology,2016.
[33]陈 焰,罗 旭,王新宽,等.输电线路装配式承台锚杆基础形式研究[J].电力勘测设计,2018(12):35-40.
CHEN Yan,LUO Xu,WANG Xin-kuan,et al.Research on the Foundation Form of Assembly Cushion Cap Anchor Rod of Transmission Line[J].Electric Power Survey & Design,2018(12):35-40.
[34]GB 50021—2009,岩土工程勘察规范[S].
GB 50021—2009,Code for Investigation of Geotechnical Engineering[S].
[35]刘 巍,徐 明,陈忠范.ABAQUS混凝土损伤塑性模型参数标定及验证[J].工业建筑,2014,44(增):167-171,213.
LIU Wei,XU Ming,CHEN Zhong-fan.Parameters Calibration and Verification of Concrete Damage Plasticity Model of ABAQUS[J].Industrial Construction,2014,44(S):167-171,213.
[36]张 劲,王庆扬,胡守营,等.ABAQUS混凝土损伤塑性模型参数验证[J].建筑结构,2008,38(8):127-130.
ZHANG Jin,WANG Qing-yang,HU Shou-ying,et al.Parameters Verification of Concrete Damaged Plastic Model of ABAQUS[J].Building Structure,2008,38(8):127-130.
[37]GB 50010—2010,混凝土结构设计规范[S].
GB 50010—2010,Code for Design of Concrete Structures[S].
[38]江丙云,孔祥宏,罗元元.ABAQUS工程实例详解[M].北京:人民邮电出版社,2014.
JIANG Bing-yun,KONG Xiang-hong,LUO Yuan-yuan.Detailed Explanation of ABAQUS Project[M].Beijing:Posts & Telecom Press,2014.
[39]汤连生,张鹏程,王 洋,等.土体内外摩擦及摩擦强度试验研究[J].岩石力学与工程学报,2004,23(6):974-979.
TANG Lian-sheng,ZHANG Peng-cheng,WANG Yang,et al.Testing Study on Internal and External Friction and Frictional Strength of Soils[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(6):974-979.

Memo

Memo:
-
Last Update: 2021-05-20