|Table of Contents|

Study on basic mechanical properties and conversion relationship of gneiss aggregate concrete(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2023年03期
Page:
10-19
Research Field:
建筑材料
Publishing date:

Info

Title:
Study on basic mechanical properties and conversion relationship of gneiss aggregate concrete
Author(s):
XU Zhihua12 XIONG Wenyong12 LIU Hui12 LI Beixing3
(1. Jiangxi Transportation Engineering Group Co., Ltd, Nanchang 330000, Jiangxi, China; 2. Jiangxi Engineering Center for Bridge Intelligent Maintenance, Nanchang 330000, Jiangxi, China; 3. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, Hubei, China)
Keywords:
gneiss aggregate concrete mechanical property machine-made sand mix proportion parameter conversion relationship regression analysis
PACS:
TU528
DOI:
10.19815/j.jace.2021.11027
Abstract:
In order to study the relationship between splitting tensile strength, axial compressive strength, elastic modulus and cubic compressive strength of gneiss machine-made aggregate concrete,the basic mechanical properties of 11 groups of C50 gneiss aggregate concrete were tested at different ages by selecting the water binder ratio, the rate of machine-made sand and the stone powder content in machine-made sand as the mixing parameter variables. Based on the test results, the influence of the mixing ratio parameters on the mechanical properties of gneiss aggregate concrete was discussed, and the conversion relationship between the cubic compressive strength and other mechanical properties was analyzed by using the mathematical statistics regression method. The results show that among the mechanical properties of gneiss aggregate concrete, the splitting tensile strength is the most affected by the change of proportioning parameters, the cubic compressive strength and axial compressive strength are the second, and the elastic modulus is the smallest. The fitted conversion relationship between splitting tensile strength, axial compressive strength, elastic modulus and cubic compressive strength of gneiss aggregate concrete can more accurately reflect the relationship between the cubic compressive strength of gneiss aggregate concrete and other mechanical performance indicators than the corresponding relationship in GB 50010—2010. The rebound value of gneiss aggregate concrete test block has little correlation with the cubic compressive strength.

References:

[1] 王 东.隧道弃渣在忻阜高速公路中的综合应用[J].山西交通科技,2011(5):68-69,77.
WANG Dong.The comprehensive application of tunnel spoil to Xinfu expressway[J].Shanxi Science & Technology of Communications,2011(5):68-69,77.
[2]陈书平,吴大鸿.隧道洞渣加工机制砂在高速公路建设中的应用[J].公路,2017,62(4):249-252.
CHEN Shuping,WU Dahong.Application of tunnel slag machine-made sand in expressway construction[J].Highway,2017,62(4):249-252.
[3]黄法礼,李化建,王 振,等.隧道洞渣建筑材料资源化应用研究现状与存在问题分析[J].中国铁路,2019(8):14-18.
HUANG Fali,LI Huajian,WANG Zhen,et al.Research results and challenges of recycling tunneling mucks[J].China Railway,2019(8):14-18.
[4]袁政成,黄法礼,王 振,等.隧道洞渣在建筑材料中的资源化综合利用研究进展[J].硅酸盐通报,2020,39(8):2468-2475.
YUAN Zhengcheng,HUANG Fali,WANG Zhen,et al.Review on resources comprehensive utilization of tunnel muck in building materials[J].Bulletin of the Chinese Ceramic Society,2020,39(8):2468-2475.
[5]郑晓冬,管志涛,李 超,等.隧道花岗岩洞渣骨料在C50混凝土预制T梁中的应用研究[J].混凝土与水泥制品,2020(12):40-44,49.
ZHENG Xiaodong,GUAN Zhitao,LI Chao,et al.Research on application of tunnel granite cave slag aggregate in C50 concrete precast T-beam[J].China Concrete and Cement Products,2020(12):40-44,49.
[6]宋少民,程 成,杨 楠.机制砂岩性对胶砂和混凝土性能影响的研究[J].混凝土,2019(9):67-70.
SONG Shaomin,CHENG Cheng,YANG Nan.Influence of manufactured sand lithology on mortar and concrete performance[J].Concrete,2019(9):67-70.
[7]唐凯靖,刘来宝,周 应.岩性对机制砂特性及其混凝土性能的影响[J].混凝土,2011(12):62-63,66.
TANG Kaijing,LIU Laibao,ZHOU Ying.Effects of lithology on properties of manufactured sand and the performance of the concrete with manufactured sand[J].Concrete,2011(12):62-63,66.
[8]谢开仲,刘振威,盖炳州,等.不同岩性的机制砂混凝土本构关系及力学性能[J].建筑科学与工程学报,2021,38(1):99-106.
XIE Kaizhong,LIU Zhenwei,GAI Bingzhou,et al.Constitutive relationship and mechanical properties of manufactured sand concrete with different rocks[J].Journal of Architecture and Civil Engineering,2021,38(1):99-106.
[9]王立华,刘 佳,钟 华.人工砂岩性和石粉含量对混凝土性能的影响[J].水力发电学报,2014,33(1):166-170.
WANG Lihua,LIU Jia,ZHONG Hua.Influences of rock types and rock powder contents of manufactured sand on the properties of concrete[J].Journal of Hydroelectric Engineering,2014,33(1):166-170.
[10]LI H J,WANG Z,HUANG F L,et al.Impact of different lithological manufactured sands on high-speed railway box girder concrete[J].Construction and Building Materials,2020,230:116943.
[11]刘崇熙,文梓芸,李 珍,等.混凝土骨料性能和制造工艺[M].广州:华南理工大学出版社,1999.
LIU Chongxi,WEN Ziyun,LI Zhen,et al.Performance and manufacturing process of concrete aggregates[M].Guangzhou:South China University of Technology Press,1999.
[12]李道军,汤荣平.小湾电站双曲拱坝混凝土配合比试验及应用[J].云南水力发电,2007(5):29-34.
LI Daojun,TANG Rongping.Test and application of concrete mix proportion of hyperbolic arch dam in Xiaowan hydropower station[J].Yunnan Water Power,2007(5):29-34.
[13]刘 豪.片麻岩碎石配制C60桥梁混凝土的研究[J].铁道建筑技术,2011(3):7-10,15.
LIU Hao.On preparation of C60 bridge concrete with gneiss gravel[J].Railway Construction Technology,2011(3):7-10,15.
[14]李北星,房艳伟,高伟光,等.片麻岩碎石压碎值对混凝土力学性能的影响[J].武汉理工大学学报,2009,31(4):80-83.
LI Beixing,FANG Yanwei,GAO Weiguang,et al.Influence of crushing value of granitic gneiss coarse aggregate on mechanical properties of concrete with different strengths[J].Journal of Wuhan University of Technology,2009,31(4):80-83.
[15]高伟光,周明凯,李北星,等.桥用C60片麻岩碎石高强混凝土的力学性能与耐久性研究[J].河南理工大学学报(自然科学版),2009,28(2):239-243.
GAO Weiguang,ZHOU Mingkai,LI Beixing,et al.Study on mechanical properties and durability of the C60 high strength concrete made from gneiss coarse aggregate in bridge[J].Journal of Henan Polytechnic University(Natural Science),2009,28(2):239-243.
[16]董 芸,杨华全,肖开涛,等.不同骨料对抗冲耐磨混凝土性能的影响[J].混凝土,2013(12):82-86.
DONG Yun,YANG Huaquan,XIAO Kaitao,et al.Effect of aggregate on performance of abrasion resistance concrete[J].Concrete,2013(12):82-86.
[17]侯云芬,刘锦涛,郑东昊.不同机制砂与聚羧酸减水剂的相容性及机理分析[J].新型建筑材料,2019,46(3):74-78,117.
HOU Yunfen,LIU Jintao,ZHENG Donghao.Analysis on the compatibility between different manufactured sand and polycarboxylate superplasticizer and its mechanism[J].New Building Materials,2019,46(3):74-78,117.
[18]QUIROGA P N,AHN N,FOWLER D W.Concrete mixtures with high microfines[J].ACI Materials Journal,2006,103(4):258-264.
[19]蔡基伟.石粉对机制砂混凝土性能的影响及机理研究[D].武汉:武汉理工大学,2006.
CAI Jiwei.Research of effects and mechanism of micro fines on manufactured fine aggregate concretes[D].Wuhan:Wuhan University of Technology,2006.
[20]EREN O,MARAR K.Effects of limestone crusher dust and steel fibers on concrete[J].Construction and Building Materials,2009,23(2):981-988.
[21]王稷良.机制砂特性对混凝土性能的影响及机理研究[D].武汉:武汉理工大学,2008.
WANG Jiliang.Research of effects and mechanism of manufactured sand characteristics on portland cement concrete[D].Wuhan:Wuhan University of Technology,2008.
[22]蒋正武,潘 峰,吴建林,等.机制砂参数对混凝土性能的影响研究[J].混凝土世界,2011(8):66-70.
JIANG Zhengwu,PAN Feng,WU Jianlin,et al.Study on the influence of machine-made sand parameters on concrete properties[J].China Concrete,2011(8):66-70.
[23]混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
Code for design of concrete structures:GB 50010—2010[S].Beijing:China Architecture & Building Press,2011.

Memo

Memo:
-
Last Update: 2023-05-20