|Table of Contents|

Study on disturbance characteristics of sharp curve electric power shield tunnel passing alongside bridge piles(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2024年02期
Page:
124-133
Research Field:
桥隧工程
Publishing date:

Info

Title:
Study on disturbance characteristics of sharp curve electric power shield tunnel passing alongside bridge piles
Author(s):
YANG Ming1 YANG Zhihao1 WANG Ya2
(1. China Energy Engineering Group Jiangsu Power Design Institute Co., Ltd., Nanjing 211102, Jiangsu, China; 2. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China)
Keywords:
shield tunnel with sharp curve passing alongside bridge pile deformation stress characteristic numerical simulation horizontal clearance
PACS:
TU455
DOI:
10.19815/j.jace.2022.12006
Abstract:
In order to explore the influence of construction of sharp curve electric power shield tunnel on the mechanical properties of pile foundations of adjacent bridge, taking a sharp curve electric power shield tunnel with turning radius of 50 m as an example, the three-dimensional finite element models of sharp curve tunnels passing alongside bridge piles under different horizontal net distance were established. The influence of the horizontal net distance between tunnel and bridge pile on the deformation and stress characteristics of pile foundation was analyzed. The results show that the calculation relative error of the surface settlement value between the numerical simulation and the theoretical value of Peck formula is 4%-19%, which is in the normal range, indicating that the numerical calculation results are reliable. When the horizontal net distance decreases from 3.6 m to 1.2 m, the vertical and transverse deformation values of pile foundations increase, and the growth rates are 143.24% and 55.56% respectively. At the same time, the maximum axial force and maximum bending moment increase by 2.08 times and 3.00 times respectively. The maximum additional bending moment occurs in the pile foundations situated on the inner side of the curve at the buried depth of the tunnel, so the pile foundations bear the most unfavorable stress. Therefore, the pile foundations situated on the inner side of the curve should be well monitored in actual construction. When the net distance is 1.2 m, the differential settlement value and inclination rate of pier column are 0.32 mm and 0.014% respectively, which are less than the allowable specification value.

References:

[1] 赵瑞桐.基于桩基托换的盾构隧道下穿既有桥梁施工影响与掘进安全对策研究[D].成都:西南交通大学,2019.
ZHAO Ruitong.Study on construction impact and excavation safety countermeasures of shield tunnel under existing bridge based on pile foundation underpinning[D].Chengdu:Southwest Jiaotong University,2019.
[2]李 军,雷明锋,林大涌.城市地铁盾构隧道下穿运营铁路施工控制技术研究[J].现代隧道技术,2018,55(2):174-179.
LI Jun,LEI Mingfeng,LIN Dayong.Construction control technology for an urban subway shield tunnel underneath an operational railway[J].Modern Tunnelling Technology,2018,55(2):174-179.
[3]马相峰,龚 伦,吴金霖,等.地铁盾构下穿多股道铁路路基变形控制优化研究[J].铁道标准设计,2019,63(11):85-90.
MA Xiangfeng,GONG Lun,WU Jinlin,et al.Study on optimized deformation control of shield tunneling crossing under railway subgrade[J].Railway Standard Design,2019,63(11):85-90.
[4]张明聚,王 妍,贾大鹏,等.盾构下穿高速铁路高架桥沉降变形控制技术[J].施工技术,2015,44(4):68-72.
ZHANG Mingju,WANG Yan,JIA Dapeng,et al.Deformation control for shield tunnel under-passing viaduct of high-speed railway[J].Construction Technology,2015,44(4):68-72.
[5]阮 雷,蹇蕴奇,鲁茜茜,等.盾构隧道埋深对临近铁路桥梁的影响分析[J].隧道建设(中英文),2018,38(增1):79-86.
RUAN Lei,JIAN Yunqi,LU Xixi,et al.Analysis on influence of shield tunnel buried depth on adjacent railway bridges[J].Tunnel Construction,2018,38(S1):79-86.
[6]郑宏利,胡继波.盾构隧道侧穿施工对既有立交桥结构体系的影响机制分析[J].现代隧道技术,2020,57(增1):473-479.
ZHENG Hongli,HU Jibo.Analysis of the influence mechanism of shield tunnel approaching construction on the existing overpass structure system[J].Modern Tunnelling Technology,2020,57(S1):473-479.
[7]王春凯.小半径近距离盾构隧道侧穿高架桩基影响研究[J].城市道桥与防洪,2017(6):282-286,31.
WANG Chunkai.Analysis on influence of minor radius short-distance shield tunnel side crossing viaduct pile foundation[J].Urban Roads Bridges & Flood Control,2017(6):282-286,31.
[8]刘 港.小转弯半径盾构隧道的施工变形分析[D].广州:华南理工大学,2013.
LIU Gang.Deformation analysis of small turning radius shield tunnel construction[D].Guangzhou:South China University of Technology,2013.
[9]邓皇适,傅鹤林,史 越.小转弯半径曲线盾构隧道开挖引发地表沉降计算[J].岩土工程学报,2021,43(1):165-173.
DENG Huangshi,FU Helin,SHI Yue.Calculation of surface settlement caused by excavation of shield tunnels with small turning radius[J].Chinese Journal of Geotechnical Engineering,2021,43(1):165-173.
[10]潘 泓,苏文渊,翟国林,等.小曲率半径转弯隧道盾构施工扰动实测分析[J].岩石力学与工程学报,2017,36(4):1024-1031.
PAN Hong,SU Wenyuan,ZHAI Guolin,et al.Soil disturbance induced by shield advancing through a small radius path[J].Chinese Journal of Rock Mechanics and Engineering,2017,36(4):1024-1031.
[11]吴 镇,张秀山,王 磊.小半径曲线叠落盾构隧道下穿京沪高铁隔离桩设置参数研究[J].铁道标准设计,2020,64(9):88-94.
WU Zhen,ZHANG Xiushan,WANG Lei.Research on setting parameters of isolation pile of small radius curve stacking shield tunnel underpassing Beijing-Shanghai high-speed railway[J].Railway Standard Design,2020,64(9):88-94.
[12]孙会良,胡盛斌,肖鹏飞,等.地铁曲线接收段盾构近距离斜穿既有车站施工风险控制:以南宁轨道交通5号线下穿既有1号线广西大学站为例[J].隧道建设(中英文),2021,41(7):1206-1217.
SUN Huiliang,HU Shengbin,XIAO Pengfei,et al.Construction risk control of a metro shield tunnel in a curved receiving section obliquely crossing an adjacent existing station:a case study on Nanning rail transit line 5 crossing underneath Guangxi university station on existing line 1[J].Tunnel Construction,2021,41(7):1206-1217.
[13]张学桥.富水砂性软土层盾构小曲线半径下穿公路隧道施工关键技术[J].城市轨道交通研究,2020,23(12):128-132.
ZHANG Xueqiao.Key technology for construction of small radius curve shield tunnel undercrossing highway tunnel in waterrich sandy soft soil layer[J].Urban Mass Transit,2020,23(12):128-132.
[14]孙捷城,路林海,王国富,等.小半径曲线盾构隧道掘进施工地表变形计算[J].中国铁道科学,2019,40(5):63-72.
SUN Jiecheng,LU Linhai,WANG Guofu,et al.Calculation method of surface deformation induced by small radius curve shield tunneling construction[J].China Railway Science,2019,40(5):63-72.
[15]郝晓龙.小半径曲线地铁盾构施工地面沉降分析[D].石家庄:石家庄铁道大学,2020.
HAO Xiaolong.Ground settlement of small radius curve subway induced by shield construction[D].Shijiazhuang:Shijiazhuang Tiedao University,2020.
[16]许宏发,王 斌.桩土接触面力学参数取值研究[J].河海大学学报(自然科学版),2001,29(增1):54-56.
XU Hongfa,WANG Bin.Study on mechanical parameters of pile-soil interface[J] Journal of Hohai University(Natural Sciences),2001,29(S1):54-56.
[17]孙志忠,袁慰平,闻震初.数值分析[M].3版.南京:东南大学出版社,2011.
SUN Zhizhong,YUAN Weiping,WEN Zhenchu.Practical numerical analysis[M].3rd ed.Nanjing:Southeast University Press,2011.
[18]严宝山.长沙万家丽小转弯隧道盾构适应性及其施工特性研究[D].赣州:江西理工大学,2018.
YAN Baoshan.Study on the small curve shield adaptability and construction characteristics of Changsha Wanjiali tunnel[D].Ganzhou:Jiangxi University of Science and Technology,2018.
[19]赵 丹.小半径、大坡度盾构隧道施工力学特性研究[D].长沙:中南大学,2007.
ZHAO Dan.Study on mechanical characteristics of shield tunnel construction with small radius and large slope[D].Changsha:Central South University,2007.
[20]金志豪,刘 涛,黄旭峰,等.盾构隧道刀盘超挖引起应力释放率的界定方法[J].隧道与地下工程灾害防治,2020,2(1):53-60.
JIN Zhihao,LIU Tao,HUANG Xufeng,et al.Method for defining stress release rate caused by overcutting of cutter head of shield tunnel[J].Hazard Control in Tunnelling and Underground Engineering,2020,2(1):53-60.
[21]韩 煊,李 宁,STANDING J R.Peck公式在中国隧道施工地面变形预测中的适用性分析[J].岩土力学,2007,28(1):23-28,35.
HAN Xuan,LI Ning,STANDING J R.An adaptability study of Gaussian equation applied to predicting ground settlements induced by tunneling in China[J].Rock and Soil Mechanics,2007,28(1):23-28,35.
[22]吴昌胜,朱志铎.不同直径盾构隧道地层损失率的对比研究[J].岩土工程学报,2018,40(12):2257-2265.
WU Changsheng,ZHU Zhiduo.Comparative study on ground loss ratio due to shield tunnel with different diameters[J].Chinese Journal of Geotechnical Engineering,2018,40(12):2257-2265.
[23]王俊东.关于城市地铁盾构工程实测地层损失率的简易计算[J].铁道勘察,2013,39(4):15-18.
WANG Jundong.Simply calculation about the rate of ground loss which measured actually on city underway shield project[J].Railway Investigation and Surveying,2013,39(4):15-18.
[24]铁路桥涵设计基本规范:TB 10002.1—2005[S].北京:中国铁道出版社,2005.
Fundamental code for design on railway bridge and culvert:TB 10002.1—2005[S].Beijing:China Railway Publishing House,2005.
[25]姚虎成,郭振坤,刘观仕.地下通道施工邻近高架桥桥墩变形控制标准探讨[J].土工基础,2015,29(1):70-73.
YAO Hucheng,GUO Zhenkun,LIU Guanshi.The impact of underpass construction on the adjacent viaducts[J].Soil Engineering and Foundation,2015,29(1):70-73.

Memo

Memo:
-
Last Update: 2024-03-25