|Table of Contents|

Robust estimation method for short-line matching method of prestressed concrete beam bridges(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2024年04期
Page:
118-129
Research Field:
桥隧工程
Publishing date:

Info

Title:
Robust estimation method for short-line matching method of prestressed concrete beam bridges
Author(s):
MENG Junmiao12 JIA Jinglin12 LIU Yongjian12 LIU Jiang12 XIAN Jianping23 XIAO Jun23
(1. School of Highway, Chang'an University, Xi'an 710064, Shaanxi, China; 2. Shaanxi Province “Four Bodies-one Union” College-enterprise Union Research Center of Bridge Engineering Intelligent Construction Technology, Chang'an University, Xi'an 710064, Shaanxi, China; 3. CCCC Second Highway Engineering Co., Ltd., Xi'an 710065, Shaanxi, China)
Keywords:
prefabricated beam bridge robust estimation total least square method short-line matching method coordinate transformation
PACS:
U448.21
DOI:
10.19815/j.jace.2024.03042
Abstract:
Aiming to the alignment control of prestressed concrete beam bridges prefabricated by short-line matching method, considering the possible random errors and gross errors in the measured values of segmental beam control points, a total least square robust estimation method with constraints was proposed, which was suitable for the alignment control of short-line matching method. The solution method was derived and the specific steps were given. A certain span of a 6×60 m continuous rigid frame in Huangmaohai sea-crossing channel project was used as the reference for data simulation. The results show that the method can correct the error of the prefabrication alignment caused by various errors during construction process in real time, and effectively prevent the accumulation of construction errors and measurement errors in subsequent segmental beams. The comparison with the existing algorithms shows that the accuracy of the proposed algorithm is the highest. The mean difference between the end of the terminal segment and the reference alignment is the smallest. Moreover, the mean square sum of the deviations representing the continuity of the general alignment is similar to the result of the least square method, which is better than the traditional point selection control method.

References:

[1] 张立青.节段预制拼装法建造桥梁技术综述[J].铁道标准设计,2014,58(12):63-66,75.
ZHANG Liqing.The summary of technologies for building bridges with assembled precast segments[J].Railway Standard Design,2014,58(12):63-66,75.
[2]郑平伟,周明星,伍贤智.短线法预制拼装施工线形控制影响参数分析[J].桥梁建设,2010,40(增1):1-3,7.
ZHENG Pingwei,ZHOU Mingxing,WU Xianzhi.Analysis of influential parameters in geometric shape control of precasting and assembling construction by short line match method[J].Bridge Construction,2010,40(S1):1-3,7.
[3]李琪勇,田晟昱,冯园林,等.短线节段预制拼装影响因素分析[J].公路,2019,64(12):156-161.
LI Qiyong,TIAN Shengyu,FENG Yuanlin,et al.Analysis of influencing factors of short-line segment prefabrication and assembly[J].Highway,2019,64(12):156-161.
[4]罗 锦,侯文崎,崔大鹏.大曲率短线匹配连续刚构桥空间几何线形控制[J].铁道科学与工程学报,2018,15(7):1738-1746.
LUO Jin,HOU Wenqi,CUI Dapeng.Spacial geometric alignment control for short-line matching continuous rigid frame bridge with large curvature[J].Journal of Railway Science and Engineering,2018,15(7):1738-1746.
[5]何旭辉,马 广.预应力混凝土箱梁短线法节段预制线形控制[J].桥梁建设,2009,39(5):64-67.
HE Xuhui,MA Guang.Geometric shape control of precasting of PC box girder segments by short-line match method[J].Bridge Construction,2009,39(5):64-67.
[6]刘海东,侯文崎,罗 锦.短线节段预制拼装桥梁几何线形三维控制方法[J].铁道科学与工程学报,2017,14(4):769-778.
LIU Haidong,HOU Wenqi,LUO Jin.Three-dimensional geometric alignment control method for short-line matching segmental precast girder assembling bridge[J].Journal of Railway Science and Engineering,2017,14(4):769-778.
[7]方 蕾.短线预制悬臂拼装连续梁桥施工线形控制研究[D].成都:西南交通大学,2008.
FANG Lei.Study on construction geometry control of prefabrication based on short-line method and cantilever erection continuous girder bridge[D].Chengdu:Southwest Jiaotong University,2008.
[8]周凌宇,郑 恒.基于坐标变换的短线预制梁段匹配误差调整[J].桥梁建设,2016,46(5):71-76.
ZHOU Lingyu,ZHENG Heng.Matching error adjustment of girder segments precast by short line match method based on coordinate transformation[J].Bridge Construction,2016,46(5):71-76.
[9]周凌宇,郑 恒,侯文崎,等.短线预制箱梁节段线形误差的改进调整法[J].华中科技大学学报(自然科学版),2016,44(9):99-104.
ZHOU Lingyu,ZHENG Heng,HOU Wenqi,et al.Improved adjustment method for linear error of precasting segmental box girder by short-line match method[J].Journal of Huazhong University of Science and Technology(Natural Science Edition),2016,44(9):99-104.
[10]时学军.短线法节段预制桥梁几何线形控制的坐标变换方法研究[J].铁道标准设计,2021,65(7):103-107,159.
SHI Xuejun.Study on coordinate transformation for geometry control of precast segmental bridge with short-line method[J].Railway Standard Design,2021,65(7):103-107,159.
[11]周江文.经典误差理论与抗差估计[J].测绘学报,1989,18(2):115-120.
ZHOU Jiangwen.Classical theory of errors and robustestimation[J].Acta Geodaetica et Cartographic Sinica,1989,18(2):115-120.
[12]鲁铁定.总体最小二乘平差理论及其在测绘数据处理中的应用[J].测绘学报,2013,42(4):630.
LU Tieding.Research on the total least squares and its applications in surveying data processing[J].Acta Geodaetica et Cartographica Sinica,2013,42(4):630.
[13]SCHAFFRIN B,FELUS Y A.On the multivariate total least-squares approach to empirical coordinate transformations.three algorithms[J].Journal of Geodesy,2008,82(6):373-383.
[14]SCHAFFRIN B,WIESER A.On weighted total least-squares adjustment for linear regression[J].Journal of Geodesy,2008,82(7):415-421.
[15]NEITZEL F.Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation[J].Journal of Geodesy,2010,84(12):751-762.
[16]JAZAERI S,AMIRI-SIMKOOEI A R,SHARIFI M A.Iterative algorithm for weighted total least squares adjustment[J].Survey Review,2014,46(334):19-27.
[17]SCHAFFRIN B.A note on constrained total least-squares estimation[J].Linear Algebra and Its Applications,2006,417(1):245-258.
[18]SCHAFFRIN B,FELUS Y A.An algorithmic approach to the total least-squares problem with linear and quadratic constraints[J].Studia Geophysica et Geodaetica,2009,53(1):1-16.
[19]陈 义,陆 珏.以三维坐标转换为例解算稳健总体最小二乘方法[J].测绘学报,2012,41(5):715-722.
CHEN Yi,LU Jue.Performing 3D similarity transformation by robust total least squares[J].Acta Geodaetica et Cartographica Sinica,2012,41(5):715-722.
[20]LU J,CHEN Y,LI B F,et al.Robust total least squares with reweighting iteration for three-dimensional similarity transformation[J].Survey Review,2014,46(334):28-36.
[21]龚循强,李志林.稳健加权总体最小二乘法[J].测绘学报,2014,43(9):888-894,901.
GONG Xunqiang,LI Zhilin.A robust weighted total least squares method[J].Acta Geodaetica et Cartographica Sinica,2014,43(9):888-894,901.
[22]解兵林,余晓琳,胡 雨,等.短线法节段梁预制拼装过程控制技术研究[J].铁道科学与工程学报,2020,17(6):1453-1461.
XIE Binglin,YU Xiaolin,HU Yu,et al.Research on control technology of precasting and assembling process of segment beam with short-line method[J].Journal of Railway Science and Engineering,2020,17(6):1453-1461.
[23]陈 宇,白征东,罗 腾.基于改进的布尔沙模型的坐标转换方法[J].大地测量与地球动力学,2010,30(3):71-73,78.
CHEN Yu,BAI Zhengdong,LUO Teng.An improved bursa model for coordinate transformation[J].Journal of Geodesy and Geodynamics,2010,30(3):71-73,78.
[24]陈再辉.三维空间直角坐标转换的Bursa模型抗差解法[J].导航定位学报,2021,9(2):118-121.
CHEN Zaihui.Bursa model robust solution for cartesian coordinate transformation in three-dimensional space[J].Journal of Navigation and Positioning,2021,9(2):118-121.
[25]GRAFAREND E W,AWANGE J L.Nonlinear analysis of the three-dimensional datum transformation[conformal group C7(3)][J].Journal of Geodesy,2003,77(1):66-76.
[26]余学祥,吕伟才.基于标准化残差的相关观测抗差估计模型[J].武汉测绘科技大学学报,1999,24(1):75-78.
YU Xuexiang,LU Weicai.Robust estimation model for correlated observations based on standardized residuals[J].Journal of Wuhan Technical University of Surveying and Mapping,1999,24(1):75-78.

Memo

Memo:
-
Last Update: 2024-07-20