|Table of Contents|

Study on influence of web member stiffness on structural internal force and seismic performance in vierendeel truss transfer structure(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年01期
Page:
90-100
Research Field:
建筑结构
Publishing date:

Info

Title:
Study on influence of web member stiffness on structural internal force and seismic performance in vierendeel truss transfer structure
Author(s):
ZHANG Zhentai1 YUE Qingxia12
(1.School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China; 2. Key Laboratory of Building Structural Retrofitting & Underground Space Engineering, Ministry of Education, Shandong Jianzhu University, Jinan 250101, Shandong, China)
Keywords:
vierendeel truss transfer structure web member stiffness static performance seismic performance fragility analysis
PACS:
TU375
DOI:
10.19815/j.jace.2023.07089
Abstract:
In order to investigate the influence of web member stiffness on the overall mechanical performance of the structure, an vierendeel web truss transfer frame structure model considering model different web stiffness was established, and dynamic analyses were conducted under vertical loads and seismic increments. The results show that appropriately increasing the stiffness of the web member can reduce the peak bending moment of the upper and lower chord members and increase the vertical stiffness. When the stiffness ratio of the web member to the chord member approaches 0.8, the positive bending moments at the mid span position of the lower chord member and the web member position are approximately the same. With the increase of seismic intensity, the influence of web stiffness on the seismic performance of structures significantly increases. When the stiffness of the web increases, the anti-collapse ability of the structure decreases in rare or extremely rare earthquakes, and the anti-collapse reserve coefficient decreases. When the ratio of linear stiffness of the side web member to the chord member increases from 0.078 to 1.323, the probability of structure reaching the level of life safety performance under rare earthquake action increases by 44%, and the probability of reaching the level of collapse prevention performance under extremely rare earthquake action increases by 98%. For the web member stiffness of the vierendeel truss transfer structure, the impact of its changes on the internal forces and seismic performance of the structure should be comprehensively considered for optimization design.

References:

[1] 王 伟,孙 东.大跨度高位转换复杂结构选型及优化设计管控[J].建筑结构,2020,50(1):52-58.
WANG Wei, SUN Dong. Structural form selection and optimization design control for large-span complex structure with high-position transfer[J]. Building Structure, 2020, 50(1): 52-58.
[2]师立德,侯建帅,张 斌,等.带梁式转换层框支剪力墙结构抗连续倒塌分析[J].科学技术与工程,2021,21(14):5898-5906.
SHI Lide, HOU Jianshuai, ZHANG Bin, et al. Progressive collapse analysis of frame supported shear wall structure with beam transfer story[J]. Science Technology and Engineering, 2021, 21(14): 5898-5906.
[3]张 誉,赵 鸣,方 健,等.空腹桁架式结构转换层的试验研究[J].建筑结构学报,1999,20(6):11-17.
ZHANG Yu, ZHAO Ming, FANG Jian, et al. Experimental research on transfer story structures of tall building[J]. Journal of Building Structures, 1999, 20(6): 11-17.
[4]AYKAC B, KALKAN I, AYKAC S, et al. Flexural behavior of RC beams with regular square or circular web openings[J]. Engineering Structures, 2013, 56: 2165-2174.
[5]戴国亮,蒋永生,梁书亭,等.迭层空腹桁架转换层结构拟动力地震反应试验研究[J].工业建筑,2001,31(6):66-68.
DAI Guoliang, JIANG Yongsheng, LIANG Shuting, et al. Experimental study of psedo-dynamic seismic response of vierendeel truss transfer storey structure[J]. Industrial Construction, 2001, 31(6): 66-68.
[6]WANG C M, PADMANABAN K, SHANMUGAM N E. Ultimate strength analysis of stub girders[J]. Journal of Structural Engineering, 1995, 121(9): 1259-1264.
[7]傅传国,蒋永生,梁书亭.大跨度叠层空腹桁架整体转换结构模型受力与抗震性能试验研究[J].建筑结构学报,2004,25(1):36-44.
FU Chuanguo, JIANG Yongsheng, LIANG Shuting. Experimental study on bearing capacity and seismic behavior of large-span two-storied vierendeel truss transfer structure[J]. Journal of Building Structures, 2004, 25(1): 36-44.
[8]李玉莹,梁书亭,孙修礼,等.空腹桁架结构受力机理研究分析[J].工业建筑,2006,36(增1):427-430,412.
LI Yuying, LIANG Shuting, SUN Xiuli, et al. The action mechanism of open-web truss[J]. Industrial Construction, 2006, 36(S1): 427-430,412.
[9]吕剑勇.空腹桁架转换结构的静力性能研究[J].建筑科学,2010,26(3):62-65.
LV Jianyong. Study on static behavior of vierendeel truss used as structure transformation[J]. Building Science, 2010, 26(3): 62-65.
[10]简 斌,李东泽,林 元,等.一级抗震预应力型钢混凝土空腹桁架转换层框架结构三道防线抗震设防设计方法[J].建筑结构学报,2021,42(1):57-66.
JIAN Bin, LI Dongze, LIN Yuan, et al. Three-line defense seismic fortification design method for first seismic grade frame with prestressed steel reinforced concrete vierendeel truss transfer storey[J]. Journal of Building Structures, 2021, 42(1): 57-66.
[11]高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2011.
Technical specification for concrete structures of tall building: JGJ 3—2010[S]. Beijing: China Architecture & Building Press, 2011.
[12]龚春玉.竖向与水平地震作用下带PSRC空腹桁架转换层框架结构抗震性能分析[D].重庆:重庆大学,2017.
GONG Chunyu. Analysis on seismic performance of frame with PSRC vierendeel tuss transfer story under vertical and horizontal ground motion[D]. Chongqing: Chongqing University, 2017.
[13]建筑工程混凝土结构抗震性能设计规程:DBJ/T 15-151-2019[S].北京:中国城市出版社,2019.
Specification for performance-based seismic design of reinforced concrete building structure: DBJ/T 15-151-2019[S]. Beijing:China City Press, 2019.
[14]混凝土结构设计规范:GB 50010—2002[S].北京:中国建筑工业出版社,2004.
Code for design of concrete structures: GB 50010—2002[S]. Beijing: China Architecture & Building Press, 2004.
[15]VAMVATSIKOS D, CORNELL C A. Applied incremental dynamic analysis[J]. Earthquake Spectra,2004, 20(2): 523-553.
[16]CONTIGUGLIA C P, PELLE A, BRISEGHELLA B, et al. IMPA versus cloud analysis and IDA: different methods to evaluate structural seismic fragility[J]. Applied Sciences, 2022, 12(7): 3687.
[17]LEE T H, MOSALAM K M. Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method[J]. Earthquake Engineering & Structural Dynamics, 2005, 34(14): 1719-1736.
[18]VAMVATSIKOS D. Seismic performance, capacity and reliability of structures as seen through incremental dynamic analysis[D]. Stanford: Stanford University, 2002.
[19]吕红山,赵凤新.适用于中国场地分类的地震动反应谱放大系数[J].地震学报,2007,29(1):67-76,114.
LÜ Hongshan, ZHAO Fengxin.Site coefficients suitable to China site category[J]. Acta Seismologica Sinica, 2007, 29(1): 67-76, 114.
[20]朱宏伟,项 琴,赖 军.基于增量动力分析的加筋土挡墙抗震性能评估[J].振动与冲击,2021,40(19):261-268.
ZHU Hongwei, XIANG Qin, LAI Jun. Aseismic performance evaluation of reinforced earth retaining wall based on IDA[J]. Journal of Vibration and Shock, 2021, 40(19): 261-268.
[21]梁逸文,陈清军.不同场地条件下远场地震动强度指标与结构最大响应的相关性分析[J].力学季刊,2022,43(3):592-602.
LIANG Yiwen, CHEN Qingjun. Correlation analysis between intensity measures of far-field ground motion and maximum structural seismic responses under different site conditions[J]. Chinese Quarterly of Mechanics, 2022, 43(3): 592-602.
[22]MOEHLE J, MAHIN S. Observations on the behavior of reinforced concrete buildings during earthquakes[J]. ACI Symposium Publication, 1991, 127: 67-90.
[23]Prestandard and commentary for the seismic rehabilitation of buildings: FEMA-356[S]. Washington DC: Federal Emergency Management Agency, 2000.
[24]刘洪波,佟 瑶,蒋垚俊,等.RC框架结构地震易损性分析方法研究进展[J].世界地震工程,2020,36(3):141-150.
LIU Hongbo, TONG Yao, JIANG Yaojun, et al. Recent development of seismic fragility analysis methods for RC frame structures[J]. World Earthquake Engineering, 2020, 36(3): 141-150.
[25]GHAFORY-ASHTIANY M, MOUSAVI M, AZARBAKHT A.Strong ground motion record selection for the reliable prediction of the mean seismic collapse capacity of a structure group[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(6): 691-708.
[26]Earthquake loss estimation methodology: user's manual: FEMA HAZUS99[S]. Washington DC: Federal Emergency Management Agency, 1999.
[27]中国地震动参数区划图:GB 18306—2015[S].北京:中国标准出版社,2016.
Seismic ground motion parameters zonation map of China: GB 18306—2015[S]. Beijing: Standards Press of China, 2016.

Memo

Memo:
-
Last Update: 2025-01-20