[1] 鞠翰文,邓 扬,李爱群.基于GRU神经网络的结构异常监测数据修复方法[J].振动与冲击,2023,42(9):328-338.
JU Hanwen, DENG Yang, LI Aiqun. Restoring method of structural abnormal monitoring data based on GRU neural network[J]. Journal of Vibration and Shock, 2023, 42(9): 328-338.
[2]YI T H, LI H N, SONG G B, et al. Detection of shifts in GPS measurements for a long-span bridge using CUSUM chart[J]. International Journal of Structural Stability and Dynamics, 2016, 16(4): 1640024.
[3]RAO A R M, KASIREDDY V, GOPALAKRISHNAN N, et al. Sensor fault detection in structural health monitoring using null subspace-based approach[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(2): 172-185.
[4]MA S L, JIANG S F, LI J. Structural damage detection considering sensor performance degradation and measurement noise effect[J]. Measurement, 2019, 131: 431-442.
[5]LI Z L, KOH B H, NAGARAJAIAH S. Detecting sensor failure via decoupled error function and inverse input-output model[J]. Journal of Engineering Mechanics, 2007, 133(11): 1222-1228.
[6]范时枭,张金辉,张其林.结构健康监测系统的数据异常识别[J].计算机辅助工程,2016,25(5):60-65.
FAN Shixiao, ZHANG Jinhui, ZHANG Qilin. Abnormal data recognition in structural health monitoring system[J]. Computer Aided Engineering, 2016, 25(5): 60-65.
[7]游 颖,王 建,刘学刚,等.改进BP神经网络的钢结构应力缺失数据重构[J].建筑科学与工程学报,2022,39(4):166-173.
YOU Ying, WANG Jian, LIU Xuegang, et al. Reconstruction of missing stress data for steel structure based on improved BP neural network[J]. Journal of Architecture and Civil Engineering, 2022, 39(4): 166-173.
[8]LECUN Y, BENGIO Y,HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[9]BAO Y Q, TANG Z Y, LI H, et al. Computer vision and deep learning-based data anomaly detection method for structural health monitoring[J]. Structural Health Monitoring, 2019, 18(2): 401-421.
[10]潘成龙,应雨龙.基于二维卷积神经网络的滚动轴承变工况故障诊断方法[J].上海电力大学学报,2022,38(1):29-34.
PAN Chenglong, YING Yulong. A fault diagnosis method for rolling bearings under variable condition based on two-dimensional convolutional neural network[J]. Journal of Shanghai University of Electric Power, 2022, 38(1): 29-34.
[11]顾梅花,苏彬彬,王苗苗,等.彩色图像灰度化算法综述[J].计算机应用研究,2019,36(5):1286-1292.
GU Meihua, SU Binbin, WANG Miaomiao, et al. Survey on decolorization methods[J]. Application Research of Computers, 2019, 36(5): 1286-1292.
[12]YI T H, HUANG H B, LI H N. Development of sensor validation methodologies for structural health monitoring: a comprehensive review[J]. Measurement, 2017, 109: 200-214.
[13]梁振隆.基于递归图和卷积神经网络的结构损伤识别研究[D].合肥:合肥工业大学,2020.
LIANG Zhenlong. Structural damage identification based on recurrence plot and convolutional neural network[D]. Hefei: Hefei University of Technology, 2020.
[14]CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively,with application to face verification[C]//IEEE. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05). San Diego: IEEE, 2005: 539-546.
[15]李书进,赵 源,孔 凡,等.卷积神经网络在结构损伤诊断中的应用[J].建筑科学与工程学报,2020,37(6):29-37.
LI Shujin, ZHAO Yuan, KONG Fan, et al. Application of convolutional neural network in structural damage identification[J]. Journal of Architecture and Civil Engineering, 2020, 37(6): 29-37.
[16]麻胜兰,翁柳青,姜绍飞.传感器性能退化与结构损伤响应异常区分研究[J].西南交通大学学报,2013,48(6):1024-1030.
MA Shenglan, WENG Liuqing, JIANG Shaofei. Distinguishing between sensor deterioration and structural damage[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 1024-1030.
[17]KULLAA J. Detection,identification,and quantification of sensor fault in a sensor network[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 208-221.
[18]HUANG H B, YI T H, LI H N. Bayesian combination of weighted principal-component analysis for diagnosing sensor faults in structural monitoring systems[J]. Journal of Engineering Mechanics, 2017, 143(9): 04017088.