|Table of Contents|

Analysis and calculation of pull-out bearing characteristics of composite foundation with inclined anchor-short pile(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年01期
Page:
167-178
Research Field:
岩土工程
Publishing date:

Info

Title:
Analysis and calculation of pull-out bearing characteristics of composite foundation with inclined anchor-short pile
Author(s):
WANG Yanhai1 YIN Hengwei12 LI Jianlin3 DENG Huafeng3
(1. College of Electricity Engineering and New Energy, China Three Gorges University, Yichang 443002, Hubei, China; 2. Hebei Province Power Transmission, Shijiazhuang 050070, Hebei, China; 3. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area, Ministry of Education, China Three Gorges University, Yichang 443002, Hubei, China)
Keywords:
transmission line inclined anchor foundation pull-out bearing capacity bearing capacity play coefficient
PACS:
TU470
DOI:
10.19815/j.jace.2023.04087
Abstract:
A new type of short pile inclined anchor composite foundation was proposed for the special foundation conditions of 4-7 m thick soil and lying hard rock in karst area transmission line projects. In order to investigate the pull-out bearing characteristics of the foundation and improve calculation method of its pull-out bearing capacity, the pull-out bearing model based on typical field test was established by ABAQUS finite element software, and the optimal anchor inclination angle and pull-out bearing mechanism of the foundation were determined. On this basis, the effects of structural parameters such as short pile diameter, embedded rock depth, anchor length and anchor number on the pull-out bearing capacity and play coefficient of the foundation were studied. The results show that bearing capacity increases and then decreases with increase of anchor inclination angle, and reaches peak when the inclination angle is 15°, which increases 46.5% compared with 0°. Increasing the structural parameters of the foundation can effectively improve the pull-out bearing capacity of the foundation. Among them, the influence of anchor number on the bearing capacity of foundation is the greatest and the influence of embedded depth, anchor length and pile diameter on the bearing capacity of foundation gradually decreases. When anchor number increases from 4 to 8, the average increase rate of bearing capacity reaches 28.9%. In terms of play coefficient, the embedded rock depth has the most significant effect on the inclined anchor bearing capacity play coefficient k2, which can be increased to 0.85. By comparing with the numerical results, the validity of the method is verified, which can provide theoretical reference for the engineering application of short pile inclined anchor composite foundation.

References:

[1] GAN J S, LI L Y. Research on foundation type selection of overhead transmission lines under different environmental conditions[J]. IOP Conference Series: Earth and Environmental Science, 2020, 558(5): 052035.
[2]FABRIS C, SCHWEIGER H F, PULKO B, et al. Numerical simulation of a ground anchor pullout test monitored with fiber optic sensors[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(2): 04020163.
[3]崔 强,邢 明,杨文智,等.喀斯特地区短桩锚杆复合基础现场抗拔试验及设计方法研究[J].岩石力学与工程学报,2018,37(11):2621-2630.
CUI Qiang, XING Ming, YANG Wenzhi, et al. Field pull-out test and design method of the short pile and anchor composite foundation in the karst area[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(11): 2621-2630.
[4]KRANTHIKUMAR A, SAWANT V A, KUMAR P, et al.Numerical and experimental investigations of granular anchor piles in loose sandy soil subjected to uplift loading[J]. International Journal of Geomechanics, 2017, 17(2): 04016059.
[5]QIAN Z Z, LU X L, YANG W Z. Comparative field tests on straight-sided and belled piers on sloping ground under combined uplift and lateral loads[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(1): 04018099.
[6]程永锋,鲁先龙,丁士君,等.掏挖与岩石锚杆复合型杆塔基础抗拔试验与计算[J].电力建设,2012,33(3):6-10.
CHENG Yongfeng, LU Xianlong, DING Shijun, et al. Experimental and computational research on the uplift of composite foundation of belled pier and rock anchor in transmission line engineering[J]. Electric Power Construction, 2012, 33(3): 6-10.
[7]毛丽荣,郑众安,吴建勇,等.掏挖与岩石锚杆复合型基础上拔承载机理和影响因素研究[J].长江科学院院报,2021,38(11):102-107,114.
MAO Lirong, ZHENG Zhongan, WU Jianyong, et al. Uplift bearing mechanism and parameter influence of excavation and rock bolt composite foundation[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(11): 102-107, 114.
[8]袁清泉,汤 涛,李政民,等.短桩与锚杆组合应用的复合型杆塔基础数值模拟分析[J].电力建设,2012,33(10):34-37.
YUAN Qingquan, TANG Tao, LI Zhengmin, et al. Numerical simulation of compound foundation with short pile and anchor[J]. Electric Power Construction, 2012, 33(10): 34-37.
[9]魏峰先,郑卫锋.输电线路直柱锚杆复合基础试验研究[J].工程勘察,2018,46(10):20-24.
WEI Fengxian, ZHENG Weifeng. Experimental study on newly column anchor composited foundation in transmission line engineering[J]. Geotechnical Investigation & Surveying, 2018, 46(10): 20-24.
[10]许顺德.桩-岩石锚杆复合基础在架空输电线路中的应用[J].南方能源建设,2017,4(增1):116-119.
XU Shunde. Application of pile-rock anchor composite foundation in transmission line[J]. Southern Energy Construction, 2017, 4(S1): 116-119.
[11]吕 庆,李 欣,麻 坚,等.上拔-水平荷载作用下锚索承台基础受力变形特性[J].湖南大学学报(自然科学版),2022,49(7):106-112.
LÜ Qing, LI Xin, MA Jian, et al. Mechanical and deformation characteristics of cable anchored platform foundation under uplift and horizontal loads[J]. Journal of Hunan University(Natural Sciences), 2022, 49(7): 106-112.
[12]孙义舟,孙宏磊,蔡袁强.桩-锚复合基础上拔承载力计算和参数影响研究[J].上海交通大学学报,2022,56(6):701-709.
SUN Yizhou, SUN Honglei, CAI Yuanqiang. Calculation method of uplift capacity of pile-anchor composite foundation and influence of parameters[J]. Journal of Shanghai Jiao Tong University, 2022, 56(6): 701-709.
[13]朱 锐,周 峰,屈 伟,等.板式中型桩复合基础抗拔承载力发挥特性数值分析[J].南京工业大学学报(自然科学版),2018,40(2):125-131.
ZHU Rui, ZHOU Feng, QU Wei, et al. Analysis on uplift bearing capacity factor of medium-sized pile cap foundation[J]. Journal of Nanjing Tech University(Natural Science Edition), 2018, 40(2): 125-131.
[14]张春新,李 萍,王兴露.抗剪强度随深度线性增长的黄土边坡稳定性分析[J].工程地质学报,2018,26(增1):135-141.
ZHANG Chunxin, LI Ping, WANG Xinglu. Stability analysis of loess slope with shear strength linearly increasing with depth[J]. Journal of Engineering Geology, 2018, 26(S1): 135-141.
[15]郑向锋,杨垂玮,赵腾飞,等.窄基塔单桩十字梁自平衡基础极限承载力试验[J].建筑科学与工程学报,2021,38(3):30-42.
ZHENG Xiangfeng, YANG Chuiwei, ZHAO Tengfei, et al. Experiment on ultimate bearing capacity of self-balancing cross beam foundation with single pile in narrow-base tower[J]. Journal of Architecture and Civil Engineering, 2021, 38(3): 30-42.
[16]费 康,彭 劼.ABAQUS岩土工程实例详解[M].北京:人民邮电出版社,2017.
FEI Kang, PENG Jie. ABAQUS geotechnical engineering examples in detail[M]. Beijing: Posts & Tecelom Press, 2017.
[17]明 敏.海上风电单桩基础水平承载力影响参数不确定性研究[D].武汉:华中科技大学,2019.
MING Min. Study on uncertainty of influencing parameters of horizontal bearing capacity of offshore wind power single pile foundation[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[18]工程岩体分级标准:GB/T 50218—2014[S].北京:中国计划出版社,2015.
Standard for engineering classification of rock mass: GB/T 50218—2014[S]. Beijing: China Planning Press, 2015.
[19]黄世斌,梁乘玮,王家全,等.加筋包裹碎石桩受力特性及参数影响分析[J].广西大学学报(自然科学版),2022,47(3):577-587.
HUANG Shibin,LIANG Chengwei,WANG Jiaquan,et al.Analysis of stress characteristics and parameter influence of geosynthetic-encased stone column[J].Journal of Guangxi University(Natural Science Edition),2022,47(3):577-587.
[20]HIRANY A, KULHAWY F H. Conduct and interpretation of load tests on drilled shaft foundations:volume 1, detailed guidelines:final report[R]. California: Electric Power Research Institute, 1988.
[21]CHIN F K. Estimation of the ultimate load of piles not carried to failure[C]// Southeast Asian Geotechnical Society. Proceedings of 2nd Southeast Asian Conference on Soil Engineering. Singapore: Southeast Asian Geotechnical Society, 1970: 81-90.
[22]郑卫锋,韩杨春,聂兰磊.输电线路岩石嵌固基础抗拔试验及数值模拟分析[J].地震工程学报,2016,38(5):738-744.
ZHENG Weifeng, HAN Yangchun, NIE Lanlei. Uplift tests and numerical simulation analysis of transmission line with rock embedded foundation[J]. China Earthquake Engineering Journal, 2016, 38(5): 738-744.
[23]曹卫平,秦强毅,赵 敏.砂土中抗拔斜桩性状模型试验研究[J].岩石力学与工程学报,2019,38(增1):3124-3133.
CAO Weiping, QIN Qiangyi, ZHAO Min. Experimental study on behavior model of anti-uplift piles in sandy soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 3124-3133.
[24]鲁先龙,崔 强.架空输电线路基础设计[M].北京:中国电力出版社,2021.
LU Xianlong, CUI Qiang. Foundation design of overhead transmission line[M]. Beijing: China Electric Power Press, 2021.
[25]架空输电线路基础设计技术规程:DL/T 5219—2014[S].北京:中国电力出版社,2015.
Technical code for design of foundation of overhead transmission line: DL/T 5219—2014[S]. Beijing: China Electric Power Press, 2015.
[26]孙长帅,杨海巍,徐光黎.岩石锚杆基础抗拔承载力计算方法探究[J].岩土力学,2009,30(增1):75-78.
SUN Changshuai, YANG Haiwei, XU Guangli. Researches on pull-out capacity calculating method of rock bolt foundation[J]. Rock and Soil Mechanics, 2009, 30(S1): 75-78.
[27]丁士君,鲁先龙,郑卫锋.输电线路新型复合式基础试验研究[J].电网与清洁能源,2011,27(1):20-24.
DING Shijun, LU Xianlong, ZHENG Weifeng. Experimental research on new composite foundation of transmission lines[J]. Power System and Clean Energy, 2011, 27(1): 20-24.
[28]刘 伟,董天文.岩石群锚杆基础界限间距与群锚效率估算方法[J].地下空间与工程学报,2020,16(1):194-200.
LIU Wei, DONG Tianwen. Limit distance and the estimating efficiency factor of rock group anchor[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(1): 194-200.

Memo

Memo:
-
Last Update: 2025-01-20