|Table of Contents|

Experimental study on crack resistance of steel-UHPC composite beams in negative moment zone(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年03期
Page:
15-25
Research Field:
建筑结构
Publishing date:

Info

Title:
Experimental study on crack resistance of steel-UHPC composite beams in negative moment zone
Author(s):
LI Lifeng1 PENG Hao1 ZOU Deqiang2 HUANG Xinyi1 LI Lingxiao2
(1. College of Civil Engineering, Hunan University, Changsha 410082, Hunan, China; 2. China Construction Fifth Engineering Bureau Co., Ltd., Changsha 410004, Hunan, China)
Keywords:
steel-UHPC composite beam negative moment zone crack resistance crack width
PACS:
TU375
DOI:
10.19815/j.jace.2023.10088
Abstract:
In order to solve the cracking problem of bridge deck slab in the negative bending moment zone of steel-concrete continuous girders, it was proposed to use ultra-high performance concrete(UHPC)to replace part of normal concrete(NC)of bridge deck slab in the negative bending moment zone. The ultra-high mechanical property of UHPC was used to solve the cracking problem of bridge deck slab in the negative bending moment zone, and its crack resistance was studied. Three steel-UHPC composite beams were designed and tested for crack resistance in the negative bending moment zone, obtaining experimental data on crack load, mid-span displacement, crack width, and strain. A simple formula for calculating the crack width of bridge deck slab suitable for steel-UHPC composite beams was proposed based on domestic and foreign crack width calculation formulas. The reliability and applicability of the proposed formula for calculating the crack width of bridge deck slab were verified based on crack width test data from existing literature on steel-UHPC composite beams. The results show that UHPC can increase the cracking load in the negative bending moment zone of composite beams, and has the ability to suppress the development of cracks in bridge decks, which can significantly improve the crack resistance of bridge deck slab in the negative bending moment zone and effectively solve the cracking problem of bridge deck slab in the negative bending moment zone. The nominal stresses calculated based on the experimental results are all greater than the actual design values of the project, indicating that the structure using UHPC instead of NC in the negative bending moment zone has excellent crack resistance performance. It is recommended that the longitudinal laying length of UHPC in the negative bending moment zone of composite beams should be 0.2L-0.25L(L is the calculated span)and the laying thickness should be 60-70 mm.

References:

[1] 樊健生,聂建国,张彦玲.钢-混凝土组合梁抗裂性能的试验研究[J].土木工程学报,2011,44(2):1-7.
FAN Jiansheng, NIE Jianguo, ZHANG Yanling. Experimental study of crack resistance of steel-concrete composite beams[J]. China Civil Engineering Journal, 2011, 44(2): 1-7.
[2]陈世鸣,孙森泉,张志彬.体外预应力钢-混凝土组合梁负弯矩区的承载力研究[J].土木工程学报,2005,38(11):14-20,88.
CHEN Shiming, SUN Senquan, ZHANG Zhibin. Load carrying capacity of steel-concrete composite beams with external tendons under negative bending[J]. China Civil Engineering Journal, 2005, 38(11): 14-20, 88.
[3]余志武,郭风琪.部分预应力钢-混凝土连续组合梁负弯矩区裂缝宽度试验研究[J].建筑结构学报,2004,25(4):55-59.
YU Zhiwu, GUO Fengqi. Experimental study of crack width in negative bending region of partially prestressed continuous steel concrete composite beams[J]. Journal of Building Structures, 2004, 25(4): 55-59.
[4]周 安,戴 航,刘其伟.体内预应力钢纤维混凝土-钢组合梁负弯矩区抗裂及裂缝宽度试验研究[J].建筑结构学报,2007,28(3):82-90.
ZHOU An, DAI Hang, LIU Qiwei. Experimental study of crack-resistance and crack width in negative bending zone of interior prestressed SFRC-steel composite beams[J]. Journal of Building Structures, 2007, 28(3): 82-90.
[5]聂建国,陶慕轩,聂 鑫,等.抗拔不抗剪连接新技术及其应用[J].土木工程学报,2015,48(4):7-14,58.
NIE Jianguo, TAO Muxuan, NIE Xin, et al. New technique and application of uplift-restricted and slip-permitted connection[J]. China Civil Engineering Journal, 2015, 48(4): 7-14, 58.
[6]戴昌源,苏庆田.钢-混凝土组合桥面板负弯矩区裂缝宽度计算[J].同济大学学报(自然科学版),2017,45(6):806-813.
DAI Changyuan, SU Qingtian. Crack width calculation of steel-concrete composite bridge deck in negative moment region[J]. Journal of Tongji University(Natural Science), 2017, 45(6): 806-813.
[7]万世成,黄 侨,关 健,等.预应力碳纤维板加固钢-混凝土组合连续梁负弯矩区试验[J].吉林大学学报(工学版),2019,49(4):1114-1123.
WAN Shicheng, HUANG Qiao, GUAN Jian, et al. Strengthening of continuous steel-concrete composite beams in negative moment region using prestressed carbon fiber-reinforced polymer plates[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1114-1123.
[8]樊健生,刘入瑞,张 君,等.采用混杂纤维ECC的叠合板组合梁负弯矩受力性能试验研究[J]. 土木工程学报, 2021, 54(4): 57-67.
FAN Jiansheng, LIU Rurui, ZHANG Jun, et al. Experimental research on mechanical behavior of composite beams with precast slabs and hybrid fiber ECC under negative moment[J]. China Civil Engineering Journal, 2021, 54(4): 57-67.
[9]刘新华,周 聪,张建仁,等.钢-UHPC组合梁负弯矩区受力性能试验[J].中国公路学报,2020,33(5):110-121.
LIU Xinhua, ZHOU Cong, ZHANG Jianren, et al. Experiment on negative bending behavior of steel-UHPC composite beams[J]. China Journal of Highway and Transport, 2020, 33(5): 110-121.
[10]朱劲松,王修策,丁婧楠.钢-UHPC华夫板组合梁负弯矩区抗弯性能试验[J].中国公路学报,2021,34(8):234-245.
ZHU Jinsong, WANG Xiuce, DING Jingnan. Experimental study on the flexural behavior of steel-UHPC composite beams with waffle slab in negative moment regions[J]. China Journal of Highway and Transport, 2021, 34(8): 234-245.
[11]马 冰.钢-UHPC组合梁负弯矩区受力性能研究[D].北京:北京交通大学,2020.
MA Bing. Research on mechanical performance of steel-UHPC composite beams in negative bending moment area[D]. Beijing: Beijing Jiaotong University, 2020.
[12]邵旭东,孔小璇,邱明红,等.先简支后连续混凝土梁负弯矩区UHPC“T形”湿接缝试验研究[J].湖南大学学报(自然科学版),2021,48(3):1-13.
SHAO Xudong, KONG Xiaoxuan, QIU Minghong, et al. Experimental study on UHPC “T-shaped” wet joints in the negative moment zone of continuous concrete beams after simple support[J]. Journal of Hunan University(Natural Sciences), 2021, 48(3): 1-13.
[13]王皓磊,孙 韬,刘晓阳,等.钢-UHPC连续组合梁抗弯性能试验[J].中国公路学报,2021,34(8):218-233.
WANG Haolei, SUN Tao, LIU Xiaoyang, et al. Experimental investigation on flexural capacity of steel-UHPC continuous composite girder[J]. China Journal of Highway and Transport, 2021, 34(8): 218-233.
[14]MATTE V, MORANVILLE M. Durability of reactive powder composites: influence of silica fume on the leaching properties of very low water/binder pastes[J]. Cement and Concrete Composites, 1999, 21(1): 1-9.
[15]AFGC, SETRA. Ultra high performance fibre reinforced concretes recommendations[M]. Pairs: AFGC & SETRA Working Group, 2013.
[16]RAFIEE A. Computer modeling and investigation on the steel corrosion in cracked ultra high performance concrete[M]. Kassel: Kassel University, 2012.
[17]陈德宝,曾明根,苏庆田,等.钢-UHPC组合桥面板湿接缝界面处理方式[J].中国公路学报,2018,31(12):154-162.
CHEN Debao, ZENG Minggen, SU Qingtian, et al. Interfacial treatment measures of wet joints in composite bridge deck composed of steel and UHPC layer[J]. China Journal of Highway and Transport, 2018, 31(12): 154-162.
[18]混凝土结构设计规范:GB 50010—2002[S].北京:中国建筑工业出版社,2004.
Code for design of concrete structures: GB 50010—2002[S]. Beijing: China Architecture & Building Press, 2004.
[19]邵旭东,罗 军,曹君辉,等.钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J].土木工程学报,2019,52(3):61-75.
SHAO Xudong, LUO Jun, CAO Junhui, et al. Experimental study and crack width calculation of steel-UHPC lightweight composite deck structure[J]. China Civil Engineering Journal, 2019, 52(3): 61-75.

Memo

Memo:
-
Last Update: 2025-06-01