[1] MUNAWAR H S, HAMMAD A W A, HADDAD A, et al. Image-based crack detection methods:a review[J]. Infrastructures, 2021, 6(8): 115.
[2]SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[3]BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[4]RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//NAVAB N, HORNEGGER J, WELLS W M, et al. Medical Image Computing and Computer-assisted Intervention—MICCAI 2015.Cham: Springer, 2015: 234-241.
[5]ZHAO H S, SHI J P, QI XJ, et al. Pyramid scene parsing network[C]//GONG Y H. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017: 6230-6239.
[6]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[7]张学立,贾新春,王美刚,等.安全帽与反光衣的轻量化检测:改进YOLOv5s的算法[J]. 计算机工程与应用,2024,60(1):104-109.
ZHANG Xueli, JIA Xinchun, WANG Meigang, et al. Lightweight detection of helmets and reflective clothings: improved YOLOv5s algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 104-109.
[8]王海瑞,赵江河,吴 蕾,等.针对CenterNet缺点的安全帽检测算法改进[J].湖南大学学报(自然科学版),2023,50(8):125-133.
WANG Hairui, ZHAO Jianghe, WU Lei, et al. Improvement of helmet detection algorithm aiming at CenterNet shortcomings[J]. Journal of Hunan University(Natural Sciences), 2023, 50(8): 125-133.
[9]李子仡,饶志强,常 惠,等.基于生成对抗网络的隧道裂缝自动分割算法研究[J].铁道学报,2023,45(5):136-142.
LI Ziyi, RAO Zhiqiang, CHANG Hui, et al. Research on automatic segmentation algorithm of tunnel cracks based on generative adversarial network[J]. Journal of the China Railway Society, 2023, 45(5): 136-142.
[10]LI W R, CHENG J, CHEN B,et al. MaskID: an effective deep-learning-based algorithm for dense rebar counting[J]. PLoS One, 2023, 18(1): e0271051.
[11]黄文豪.基于改进Faster RCNN的钢筋数量检测[J].电子技术与软件工程,2023(2):181-184.
HUANG Wenhao. Detection of reinforcement quantity based on improved Faster RCNN[J]. Electronic Technology & Software Engineering, 2023(2): 181-184.
[12]明洪宇,陈春梅,刘桂华,等.基于RetinaNet的密集型钢筋计数改进算法[J].传感器与微系统,2020,39(12):115-118.
MING Hongyu, CHEN Chunmei, LIU Guihua,et al.Improved counting algorithm for dense rebars based on RetinaNet[J]. Transducer and Microsystem Technologies, 2020, 39(12): 115-118.
[13]杜延丽.无人机工程监理钢筋尺寸测量方法的研究与实现[D].济南:山东大学,2020.
DU Yanli. Research and implementation of reinforcement dimension measurement method for UAV engineering supervision[D]. Jinan: Shandong University, 2020.
[14]闫天冉,马晓静,饶颖露,等.基于改进Mask R-CNN的建筑钢筋尺寸检测算法[J].计算机工程,2021,47(9):274-281.
YAN Tianran, MA Xiaojing, RAO Yinglu, et al. Rebar size detection algorithm for intelligent construction supervision based on improved Mask R-CNN[J]. Computer Engineering, 2021, 47(9): 274-281.
[15]杜守航,李 炜,邢江河,等.基于FM-UNet++和高分二号卫星影像的露天矿区范围变化检测[J].煤田地质与勘探,2023,51(7):130-139.
DU Shouhang, LI Wei, XING Jianghe, et al. Change detection of open-pit mines based on FM-UNet++ and GF-2 satellite images[J]. Coal Geology & Exploration, 2023, 51(7): 130-139.
[16]明兴涛,杨德宏.基于多模块的遥感影像建筑物提取方法[J].激光与光电子学进展,2024,61(4):385-393.
MING Xingtao, YANG Dehong. Building extraction from remote sensing image based on multi-module[J]. Laser & Optoelectronics Progress, 2024, 61(4): 385-393.
[17]尹美杰,倪 翠,王 朋,等.基于语义分割的遥感影像建筑变化检测[J].应用科学学报,2023,41(3):448-460.
YIN Meijie, NI Cui, WANG Peng, et al. Building change detection in remote sensing images based on semantic segmentation[J]. Journal of Applied Sciences, 2023, 41(3): 448-460.
[18]陈 果,胡立坤.结合上下文信息与多层特征融合的遥感道路提取[J].激光与光电子学进展,2024,61(4):416-426.
CHEN Guo, HU Likun. Remote sensing road extraction combining contextual information and multi-layer features fusion[J]. Laser & Optoelectronics Progress, 2024, 61(4): 416-426.
[19]张伟光,钟靖涛,呼延菊,等.基于VGG16-UNet语义分割模型的路面龟裂形态提取与量化[J].交通运输工程学报,2023,23(2):166-182.
ZHANG Weiguang, ZHONG Jingtao, HU Yanju,et al.Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182.
[20]刘 凡,王君锋,陈峙宇,等.基于并行注意力UNet的裂缝检测方法[J].计算机研究与发展,2021,58(8):1718-1726.
LIU Fan,WANG Junfeng, CHEN Zhiyu, et al.Parallel attention based UNet for crack detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726.
[21]惠 冰,李远见.基于改进U型神经网络的路面裂缝检测方法[J].交通信息与安全,2023,41(1):105-114,131.
HUI Bing, LI Yuanjian. A detection method for pavement cracks based on an improved U-shaped network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114, 131.
[22]HE K M, ZHANG X Y, REN SQ, et al. Deep residual learning for image recognition[C]// MORTENSEN E, SAENKO K. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016: 770-778.
[23]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[24]ZHU W T, HUANG Y F, ZENG L, et al. AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J]. Medical Physics, 2019, 46(2): 576-589.
[25]CHEN L C, ZHU Y K, PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//FERRARI V, HEBERT M, SMINCHISESCU C, et al. Computer Vision—ECCV 2018. Cham: Springer, 2018: 833-851.
[26]WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
[27]混凝土结构工程施工质量验收规范:GB 50204—2015[S].北京:中国建筑工业出版社,2015.
Code for quality acceptance of concrete structure construction: GB 50204—2015[S]. Beijing: China Architecture & Building Press, 2015.