|Table of Contents|

Research on measurement algorithm for double-layer rebar dimensions of floor slabs based on Res-AA U-Net model(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年03期
Page:
103-114
Research Field:
建筑结构
Publishing date:

Info

Title:
Research on measurement algorithm for double-layer rebar dimensions of floor slabs based on Res-AA U-Net model
Author(s):
CHEN Wanqing1 LI Gang1 SHENG Minghui1 FU Xianglin2 CHEN Wei2
(1.Wuhan Yucheng Jiufang Construction Co. Ltd., Wuhan 430050, Hubei, China; 2. School of Civil and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China)
Keywords:
floor slab double-layer rebar dimension measurement U-Net model attention gate mechanism ResNet34 network transfer learning ASPP module
PACS:
TU398
DOI:
10.19815/j.jace.2024.01062
Abstract:
Rebar engineering inspection has the problem of high consumption of human resources and high time cost for acceptance. Especially when the size acceptance of floor slab double-layer rebar, the upper layer of reinforcing bars covers the lower layer of reinforcing bars, leading to increased difficulty in measurement. However, the traditional image processing methods are difficult to meet the requirements of the measurement accuracy. Therefore, an automatic method for measuring the size of double-layer reinforcing bars in floor slabs based on the Res-AA U-Net was proposed. The method improved Resnet34 by pruning its network structure and optimizing the loss function, replaced the feature extractor of U-Net with the improved Resnet34, replaced the jump connection with the attention gate mechanism, and at the same time added the improved ASPP module at the bottom of the U-Net to construct a dataset containing 3 355 images of floor rebars, and finally accelerated the training speed of the model by using the transfer learning technique. The results show that the model rebar segmentation based on Res-AA U-Net is better than the classical segmentation networks such as U-Net, Deeplab v3+, HRNet, PSPNet, et al. Key metrics including average intersection over union, pixel accuracy, and recall achieve values of 92.81%, 96.02%, and 94.49%, respectively. Compared with the original U-Net, Res-AA U-Net rebar diameter measurement and rebar spacing measurement errors are reduced by 13.63% and 5.82%, respectively, and the measurement accuracy meets the acceptance requirements of double floor rebar in the acceptance standard of rebar engineering, which can effectively improve the efficiency and intelligence of rebar engineering acceptance.

References:

[1] MUNAWAR H S, HAMMAD A W A, HADDAD A, et al. Image-based crack detection methods:a review[J]. Infrastructures, 2021, 6(8): 115.
[2]SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
[3]BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[4]RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//NAVAB N, HORNEGGER J, WELLS W M, et al. Medical Image Computing and Computer-assisted Intervention—MICCAI 2015.Cham: Springer, 2015: 234-241.
[5]ZHAO H S, SHI J P, QI XJ, et al. Pyramid scene parsing network[C]//GONG Y H. 2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu: IEEE, 2017: 6230-6239.
[6]CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab:semantic image segmentation with deep convolutional nets,atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848.
[7]张学立,贾新春,王美刚,等.安全帽与反光衣的轻量化检测:改进YOLOv5s的算法[J]. 计算机工程与应用,2024,60(1):104-109.
ZHANG Xueli, JIA Xinchun, WANG Meigang, et al. Lightweight detection of helmets and reflective clothings: improved YOLOv5s algorithm[J]. Computer Engineering and Applications, 2024, 60(1): 104-109.
[8]王海瑞,赵江河,吴 蕾,等.针对CenterNet缺点的安全帽检测算法改进[J].湖南大学学报(自然科学版),2023,50(8):125-133.
WANG Hairui, ZHAO Jianghe, WU Lei, et al. Improvement of helmet detection algorithm aiming at CenterNet shortcomings[J]. Journal of Hunan University(Natural Sciences), 2023, 50(8): 125-133.
[9]李子仡,饶志强,常 惠,等.基于生成对抗网络的隧道裂缝自动分割算法研究[J].铁道学报,2023,45(5):136-142.
LI Ziyi, RAO Zhiqiang, CHANG Hui, et al. Research on automatic segmentation algorithm of tunnel cracks based on generative adversarial network[J]. Journal of the China Railway Society, 2023, 45(5): 136-142.
[10]LI W R, CHENG J, CHEN B,et al. MaskID: an effective deep-learning-based algorithm for dense rebar counting[J]. PLoS One, 2023, 18(1): e0271051.
[11]黄文豪.基于改进Faster RCNN的钢筋数量检测[J].电子技术与软件工程,2023(2):181-184.
HUANG Wenhao. Detection of reinforcement quantity based on improved Faster RCNN[J]. Electronic Technology & Software Engineering, 2023(2): 181-184.
[12]明洪宇,陈春梅,刘桂华,等.基于RetinaNet的密集型钢筋计数改进算法[J].传感器与微系统,2020,39(12):115-118.
MING Hongyu, CHEN Chunmei, LIU Guihua,et al.Improved counting algorithm for dense rebars based on RetinaNet[J]. Transducer and Microsystem Technologies, 2020, 39(12): 115-118.
[13]杜延丽.无人机工程监理钢筋尺寸测量方法的研究与实现[D].济南:山东大学,2020.
DU Yanli. Research and implementation of reinforcement dimension measurement method for UAV engineering supervision[D]. Jinan: Shandong University, 2020.
[14]闫天冉,马晓静,饶颖露,等.基于改进Mask R-CNN的建筑钢筋尺寸检测算法[J].计算机工程,2021,47(9):274-281.
YAN Tianran, MA Xiaojing, RAO Yinglu, et al. Rebar size detection algorithm for intelligent construction supervision based on improved Mask R-CNN[J]. Computer Engineering, 2021, 47(9): 274-281.
[15]杜守航,李 炜,邢江河,等.基于FM-UNet++和高分二号卫星影像的露天矿区范围变化检测[J].煤田地质与勘探,2023,51(7):130-139.
DU Shouhang, LI Wei, XING Jianghe, et al. Change detection of open-pit mines based on FM-UNet++ and GF-2 satellite images[J]. Coal Geology & Exploration, 2023, 51(7): 130-139.
[16]明兴涛,杨德宏.基于多模块的遥感影像建筑物提取方法[J].激光与光电子学进展,2024,61(4):385-393.
MING Xingtao, YANG Dehong. Building extraction from remote sensing image based on multi-module[J]. Laser & Optoelectronics Progress, 2024, 61(4): 385-393.
[17]尹美杰,倪 翠,王 朋,等.基于语义分割的遥感影像建筑变化检测[J].应用科学学报,2023,41(3):448-460.
YIN Meijie, NI Cui, WANG Peng, et al. Building change detection in remote sensing images based on semantic segmentation[J]. Journal of Applied Sciences, 2023, 41(3): 448-460.
[18]陈 果,胡立坤.结合上下文信息与多层特征融合的遥感道路提取[J].激光与光电子学进展,2024,61(4):416-426.
CHEN Guo, HU Likun. Remote sensing road extraction combining contextual information and multi-layer features fusion[J]. Laser & Optoelectronics Progress, 2024, 61(4): 416-426.
[19]张伟光,钟靖涛,呼延菊,等.基于VGG16-UNet语义分割模型的路面龟裂形态提取与量化[J].交通运输工程学报,2023,23(2):166-182.
ZHANG Weiguang, ZHONG Jingtao, HU Yanju,et al.Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182.
[20]刘 凡,王君锋,陈峙宇,等.基于并行注意力UNet的裂缝检测方法[J].计算机研究与发展,2021,58(8):1718-1726.
LIU Fan,WANG Junfeng, CHEN Zhiyu, et al.Parallel attention based UNet for crack detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726.
[21]惠 冰,李远见.基于改进U型神经网络的路面裂缝检测方法[J].交通信息与安全,2023,41(1):105-114,131.
HUI Bing, LI Yuanjian. A detection method for pavement cracks based on an improved U-shaped network[J]. Journal of Transport Information and Safety, 2023, 41(1): 105-114, 131.
[22]HE K M, ZHANG X Y, REN SQ, et al. Deep residual learning for image recognition[C]// MORTENSEN E, SAENKO K. 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas: IEEE, 2016: 770-778.
[23]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[24]ZHU W T, HUANG Y F, ZENG L, et al. AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy[J]. Medical Physics, 2019, 46(2): 576-589.
[25]CHEN L C, ZHU Y K, PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//FERRARI V, HEBERT M, SMINCHISESCU C, et al. Computer Vision—ECCV 2018. Cham: Springer, 2018: 833-851.
[26]WANG J D, SUN K, CHENG T H, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364.
[27]混凝土结构工程施工质量验收规范:GB 50204—2015[S].北京:中国建筑工业出版社,2015.
Code for quality acceptance of concrete structure construction: GB 50204—2015[S]. Beijing: China Architecture & Building Press, 2015.

Memo

Memo:
-
Last Update: 2025-06-01