[1] 密士文,朱自强,彭凌星,等.T梁预应力波纹管压浆密实度超声检测试验研究[J].中南大学学报(自然科学版),2013,44(6):2378-2384.
MI Shiwen, ZHU Ziqiang, PENG Lingxing, et al. Experimental study of detecting grouting density of pre-stressed tendon ducts through ultrasonic[J]. Journal of Central South University(Science and Technology), 2013, 44(6): 2378-2384.
[2]邵旭东,曹君辉.面向未来的高性能桥梁结构研发与应用[J].建筑科学与工程学报,2017,34(5):41-58.
SHAO Xudong, CAO Junhui. Research and application of high performance bridge structures toward future[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 41-58.
[3]冯小伟,毛云程.预应力孔道压浆试件破坏的力学性能分析[J].混凝土,2014(1):155-158.
FENG Xiaowei, MAO Yuncheng. Mechanics property analysis on specimen damage of the prestressed duct grouting[J]. Concrete, 2014(1): 155-158.
[4]何聪岩.波纹管内钢绞线粘结性能试验与理论研究[D].天津:河北工业大学,2021.
HE Congyan. Theoretical and experimental research on bonding performance of steel strand in corrugated pipe[D]. Tianjin: Hebei University of Technology, 2021.
[5]李 鑫.核电用预应力钢绞线粘结滑移性能和锚固长度研究[D].大连:大连理工大学,2020.
LI Xin. Study on bond-slip properties and anchorage length of prestressing strand used in nuclear power plant[D]. Dalian: Dalian University of Technology, 2020.
[6]公路桥涵施工技术规范:JTG/T 3650—2020[S].北京:人民交通出版社,2020.
Technical specifications for construction of highway bridges and culverts: JTG/T 3650—2020[S]. Beijing: China Communications Press, 2020.
[7]张竞男,孙福洋,王 浩.基于BP神经网络的超声-回弹-钻芯综合测强法[J].建筑科学与工程学报,2009,26(1):68-74.
ZHANG Jingnan, SUN Fuyang, WANG Hao. Ultrasonic-rebound and core-drilling synthetic method in strength testing based on BP neural network[J]. Journal of Architecture and Civil Engineering, 2009, 26(1): 68-74.
[8]马 高,刘 康.基于BP神经网络CFRP约束混凝土抗压强度预测[J].湖南大学学报(自然科学版),2021,48(9):88-97.
MA Gao, LIU Kang. Prediction of compressive strength of CFRP-confined concrete columns based on BP neural network[J]. Journal of Hunan University(Natural Sciences), 2021, 48(9): 88-97.
[9]TENZA-ABRIL A J, VILLACAMPA Y, SOLAK A M, et al. Prediction and sensitivity analysis of compressive strength in segregated lightweight concrete based on artificial neural network using ultrasonic pulse velocity[J]. Construction and Building Materials, 2018, 189: 1173-1183.
[10]焦 莉,刘 明,李宏男.利用改进的BP神经网络预测烧结砖的抗压强度[J].建筑材料学报,2005,8(3):284-288.
JIAO Li, LIU Ming, LI Hongnan. Forecast about the compressive strength of clay brick based on improved BP neural network[J]. Journal of Building Materials, 2005, 8(3): 284-288.
[11]KEWALRAMANI M A, GUPTA R. Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks[J]. Automation in Construction, 2006, 15(3): 374-379.
[12]JIN L B, DUAN J, FAN T, et al. Using GA-BP coupling algorithm to predict the high-performance concrete mechanical property[J]. KSCE Journal of Civil Engineering, 2023, 27(2): 684-697.
[13]CHEN G, ZHU D L, WANG X, et al. Prediction of concrete compressive strength based on the BP neural network optimized by random forest and ISSA[J]. Journal of Function Spaces, 2022, 2022: 8799429.
[14]陈 庆,马 瑞,蒋正武,等.基于GA-BP神经网络的UHPC抗压强度预测与配合比设计[J].建筑材料学报,2020,23(1):176-183,191.
CHEN Qing, MA Rui, JIANG Zhengwu, et al. Compressive strength prediction and mix proportion design of UHPC based on GA-BP neural network[J]. Journal of Building Materials, 2020, 23(1): 176-183, 191.
[15]周 中,邓卓湘,陈 云,等.基于GA-BP神经网络的泡沫轻质土强度预测[J].华南理工大学学报(自然科学版),2022,50(11):125-132.
ZHOU Zhong, DENG Zhuoxiang, CHEN Yun, et al. Strength prediction of foam light soil based on GA-BP neural network[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(11): 125-132.
[16]DU G Q, BU L T, HOU Q, et al. Prediction of the compressive strength of high-performance self-compacting concrete by an ultrasonic-rebound method based on a GA-BP neural network[J]. PLOS One, 2021, 16(5): e0250795.
[17]XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[18]段妹玲,张 单,袁锦虎,等.基于ISSA-GRU的混凝土抗压强度预测[J].硅酸盐通报,2023,42(7):2392-2400.
DUAN Meiling, ZHANG Dan, YUAN Jinhu, et al. Prediction of compressive strength of concrete based on ISSA-GRU[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2392-2400.
[19]WANG K W, REN J, YAN J W, et al. Research on a concrete compressive strength prediction method based on the random forest and LCSSA-improved BP neural network[J]. Journal of Building Engineering, 2023, 76: 107150.
[20]LI G B, HU T Y, BAI D W. BP neural network improved by sparrow search algorithm in predicting debonding strain of FRP-strengthened RC beams[J]. Advances in Civil Engineering, 2021, 2021(1): 9979028.
[21]王庆荣,王俊杰,朱昌锋,等.融合VMD和SSA-LSSVM的交通运输业碳排放预测研究[J].环境工程,2023, 41(10): 124-132.
WANG Qingrong, WANG Junjie, ZHU Changfeng, et al. Carbon emission prediction of transportation industry based on VMD and SSA-LSSVM[J]. Environmental Engineering, 2023, 41(10): 124-132.
[22]金爱兵,张静辉,孙 浩,等.基于SSA-SVM的边坡失稳智能预测及预警模型[J].华中科技大学学报(自然科学版),2022,50(11):142-148.
JIN Aibing, ZHANG Jinghui, SUN Hao, et al. Intelligent prediction and alert model of slope instability based on SSA-SVM[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2022, 50(11): 142-148.
[23]装配整体式混凝土结构检测技术规程: DB32/T 3754—2020[S].南京:江苏科学技术出版社,2020.
Technical specification for testing of assembled monolithic concrete structures: DB32/T 3754—2020[S]. Nanjing: Jiangsu Science and Technology Press, 2020.
[24]吴 瑞.桥梁预应力管道灌浆密实度综合检测试验研究[D].成都:西华大学,2019.
WU Rui. Experimental study on comprehensive test of grouting density of bridge prestressed pipeline in bridge[D]. Chengdu: Xihua University, 2019.
[25]超声回弹综合法检测混凝土强度技术规程:CECS 02—2005[S].北京:中国计划出版社,2005.
Technical specification for detecting strength of concrete by ultrasonic-rebound combined method: CECS 02—2005[S]. Beijing: China Planning Press, 2005.
[26]李秀春,邓 亚,张春良,等.超声回弹综合法检测混凝土结构强度平测修正方法技术研究[J].建筑结构,2019,49(增1):875-877.
LI Xiuchun, DENG Ya, ZHANG Chunliang, et al. Technology research on the method of ultrasonic-rebound synthesis method for testing concrete structure strength[J]. Building Structure, 2019, 49(S1): 875-877.
[27]吴 楠,韩爱民,孙春霞,等.超声回弹法平测声速修正系数计算及可靠性检验[J].中外公路,2008,28(5): 243-246.
WU Nan, HAN Aimin, SUN Chunxia, et al. Calculation and reliability test of correction coefficient for flat measurement of sound velocity by ultrasonic rebound method[J]. Journal of China & Foreign Highway, 2008, 28(5): 243-246.
[28]薛建凯.一种新型的群智能优化技术的研究与应用:麻雀搜索算法[D].上海:东华大学,2020.
XUE Jiankai. Research and application of a new swarm intelligence optimization technology: sparrow search algorithm[D]. Shanghai: Donghua University, 2020.
[29]王双双.基于GABP神经网络的智能变电站成熟度模型构建及评价研究[D].郑州:郑州大学,2020.
WANG Shuangshuang. Maturity model establishment and evaluation of smart substation based on GABP neural network[D]. Zhengzhou: Zhengzhou University, 2020.
[30]赵建华,凌良建,吕 嘉,等.表面硬度法检测灌浆料实体强度试验研究[J].混凝土与水泥制品,2022(8):78-82.
ZHAO Jianhua, LING Liangjian, LYU Jia, et al. Experimental study on testing solid strength of grouting materials by surface hardness method[J]. China Concrete and Cement Products, 2022(8): 78-82.
[31]吴玉龙,顾 盛,赵建华,等.基于孔道条件的表面硬度法检测灌浆料抗压强度试验研究[J].混凝土,2022(3):186-192.
WU Yulong, GU Sheng, ZHAO Jianhua, et al. Experimental study on testing compressive strength of grouting material by surface hardness method based on pore condition[J]. Concrete, 2022(3): 186-192.