|Table of Contents|

Research progress on mechanical properties of aluminum alloy tube(concrete)members(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年05期
Page:
1-14
Research Field:
综述
Publishing date:

Info

Title:
Research progress on mechanical properties of aluminum alloy tube(concrete)members
Author(s):
WANG Jingxuan LIU Fangling LI Bowen
(School of Civil and Hydraulic Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China)
Keywords:
aluminum alloy tube mechanical property failure mode load capacity calculation research progress
PACS:
TU398.9
DOI:
10.19815/j.jace.2024.05009
Abstract:
Aluminum alloy has significant potential in green building structures due to its high strength-to-weight ratio, corrosion resistance, recyclability and low life-cycle cost. In order to gain a deeper understanding of the basic mechanical properties and current research progress of aluminum alloy tube(concrete)members and develop precise design methods, the physical and chemical properties, corrosion resistance and recyclability of aluminum alloy materials, as well as their typical engineering applications in modern structures(such as large-span spatial structures, bridges, low-rise frames, et al)were first summarized. Secondly, the research work on aluminum alloy tube(concrete)members was reviewed from the aspects of experimental studies and numerical simulations, including the bond, axial compression, eccentric compression, flexural, and hysteretic performance under cyclic loading of such members, as well as the failure modes of the members. In addition, the calculation formulas for the axial compressive bearing capacity of concrete filled aluminum alloy tube(CFAT)numbers in the existing studies were summarized, and the future research trends in this field were prospected. The results show that the current scholars mainly conduct many experimental studies and numerical simulations on the axial compression performance of circular concrete filled aluminum alloy tube and aluminum alloy composite tube concrete columns. However, there are relatively few studies on the mechanical properties of square cross-section members, and there is no design specification for concrete-filled aluminum alloy tube structures.

References:

[1] WEISS D. Advances in the sand casting of aluminium alloys[M]//LUMLEY R N. Fundamentals of Aluminium Metallurgy: Recent Advances. Cambridge: Woodhead Publishing, 2018: 159-171.
[2]YOU X H, XING Z Q, JIANG S W, et al. A review of research on aluminum alloy materials in structural engineering[J]. Developments in the Built Environment, 2024, 17: 100319.
[3]HU Z Q, WAN L, LU S L, et al. Research on the microstructure, fatigue and corrosion behavior of per-manent mold and die cast aluminum alloy[J]. Materials & Design, 2014, 55: 353-360.
[4]CHIBA R, YOSHIMURA M. Solid-state recycling of aluminium alloy swarf into C-channel by hot extrusion[J]. Journal of Manufacturing Processes, 2015, 17: 1-8.
[5]BAREKAR N S, DHINDAW B K. Twin-roll casting of aluminum alloys — an overview[J]. Materials and Manufacturing Processes, 2014, 29(6): 651-661.
[6]DAVIES C, BARNETT M. Expanding the extrusion limits of wrought magnesium alloys[J]. JOM, 2004, 56(5): 22-24.
[7]YAN W L, LIU X H, HUANG J Y, et al. Strength and ductility in ultrafine-grained wrought aluminum alloys[J]. Materials & Design, 2013, 49: 520-524.
[8]DOEGE E, DRODER K. Sheet metal forming of magnesium wrought alloys: formability and process technology[J]. Journal of Materials Processing Technology, 2001, 115(1): 14-19.
[9]HAMDY A S, DOENCH I, MOHWALD H. Intelligent self-healing corrosion resistant vanadia coating for AA2024[J].Thin Solid Films, 2011, 520(5): 1668-1678.
[10]BIRBILIS N, HINTON B. Corrosion and corrosion protection of aluminium[J]. Fundamentals of aluminium metallurgy, 2011: 574-604.
[11]CUI J R, ROVEN H J. Recycling of automotive aluminum[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(11): 2057-2063.
[12]WANG X H, WANG J H, FU C W. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3907-3916.
[13]LECLERE T J R, DAVENPORT A J, NEWMAN R C. Enhancement of localized corrosion in aluminum alloys by weak acids[J]. Corrosion, 2007, 63(4): 338-345.
[14]MUSA A Y, MOHAMAD A B, KADHUM A A H, et al. Galvanic corrosion of aluminum alloy(Al2024)and copper in 1.0 M nitric acid[J]. International Journal of Electrochemical Science, 2011, 6(10): 5052-5065.
[15]CAPUZZI S, TIMELLI G. Preparation and melting of scrap in aluminum recycling: a review[J]. Metals, 2018, 8(4): 249.
[16]SEVIGNE-ITOIZ E, GASOL C M, RIERADEVALL J, et al. Environmental consequences of recycling aluminum old scrap in a global market[J]. Resources, Conservation and Recycling, 2014, 89: 94-103.
[17]SUN Y. The use of aluminum alloys in structures: review and outlook[J]. Structures, 2023, 57: 105290.
[18]GEORGANTZIA E, GKANTOU M, KAMARIS G S. Aluminium alloys as structural material: a review of research[J]. Engineering Structures, 2021, 227: 111372.
[19]支新航,王元清,张 颖,等.低层铝合金框架结构的工程应用与研究进展[J].工程力学,2023,40(增1):46-55.
ZHI Xinhang, WANG Yuanqing, ZHANG Ying, et al. Engineering applications and research progress of low-rise aluminum alloy frames[J]. Engineering Mechanics, 2023, 40(S1): 46-55.
[20]杨联萍, 韦 申, 张其林.铝合金空间网格结构研究现状及关键问题[J].建筑结构学报,2013,34(2):1-19,60.
YANG Lianping, WEI Shen, ZHANG Qilin. Aluminum reticulated spatial structures: state of the art and key issues[J]. Journal of Building Structures, 2013, 34(2): 1-19, 60.
[21]张 颖,王元清,张俊光,等.铝合金网壳结构箱型-工字型盘式节点单肢受力性能有限元分析[J].工程力学,2020,37(增1):130-138.
ZHANG Ying, WANG Yuanqing, ZHANG Junguang, et al. Finite element analysis on mechanical performance of single-limbed box-I section member temcor joints in aluminum alloy spatial reticulated shell structures[J]. Engineering Mechanics, 2020, 37(S1): 130-138.
[22]郭小农,宗绍晗,成张佳宁,等.铝合金结构耐腐蚀性能研究现状简述[J].建筑钢结构进展,2021,23(6):1-12,60.
GUO Xiaonong, ZONG Shaohan, CHENG Zhangjianing, et al. State-of-the-art of the research on corrosion resistance of aluminum alloy structures[J]. Progress in Steel Building Structures, 2021, 23(6): 1-12, 60.
[23]李志强,刘小蔚,欧阳元文.拉斐尔云廊大跨度铝合金屋盖结构施工模拟分析与方案对比[J].建筑结构,2020,50(增2):146-149.
LI Zhiqiang, LIU Xiaowei, OUYANG Yuanwen. Construction simulation and program comparison on large-span aluminum alloy structure of Rafael roof[J]. Building Structure, 2020, 50(S2): 146-149.
[24]SU M N, YOUNG B, GARDNER L. Testing and design of aluminum alloy cross sections in compression[J]. Journal of Structural Engineering, 2014, 140(9): 04014047.
[25]WANG Y J, FAN F, LIN S B. Experimental investigation on the stability of aluminium alloy 6082 circular tubes in axial compression[J]. Thin-walled Structures, 2015, 89: 54-66.
[26]WANG Z X, WANG Y Q, SOJEONG J, et al. Experimental investigation and parametric analysis on overall buckling behavior of large-section aluminum alloy columns under axial compression[J]. Thin-walled Structures, 2018, 122: 585-596.
[27]钟昌均,冯若强,李虎阳.6A13-T6高强铝合金方形截面柱轴压性能研究[J].建筑结构学报,2024,45(12):213-222.
ZHONG Changjun, FENG Ruoqiang, LI Huyang. Study on axial compression behavior of 6A13-T6 high-strength aluminum alloy square section columns[J]. Journal of Building Structures, 2024, 45(12): 213-222.
[28]ADEOTI G O, FAN F, WANG Y J, et al. Stability of 6082-T6 aluminium alloy columns with H-section and rectangular hollow sections[J]. Thin-walled Structures, 2015, 89: 1-16.
[29]ZHAO Y Z, ZHAI X M, WANG J H. Buckling behaviors and ultimate strengths of 6082-T6 aluminum alloy columns under eccentric compression — part I: experiments and finite element modeling[J]. Thin-walled Structures, 2019, 143: 106207.
[30]JIANG S C, XIONG Z, GUO X N, et al. Buckling behaviour of aluminium alloy columns under fire conditions[J]. Thin-walled Structures, 2018, 124: 523-537.
[31]FENG R, LIU J R. Numerical investigation and design of perforated aluminium alloy SHS and RHS columns[J]. Engineering Structures, 2019, 199: 109591.
[32]FENG R, MOU X L, CHEN Z M, et al. Finite-element modelling and design guidelines for axial compressive capacity of aluminium alloy circular hollow sections with holes[J]. Thin-walled Structures, 2020, 157: 107027.
[33]RONG B, GUO Y, LI Z Y. Study on the stability behavior of 7A04-T6 aluminum alloy square and rectangular hollow section columns under axial compression[J]. Journal of Building Engineering, 2022, 45: 103652.
[34]ZHI X H, WANG Y Q, LI B B, et al. Axial compression behaviour of 7A04-T6 high-strength aluminium alloy SHS and RHS stub columns[J]. Thin-walled Structures, 2022, 180: 109816.
[35]李振宇,王衬心,李进军,等.7A04铝合金圆管构件轴压稳定性研究[J].天津大学学报(自然科学与工程技术版),2020,53(10):1036-1044.
LI Zhenyu, WANG Chenxin, LI Jinjun, et al. Stability of 7A04 aluminum alloy circular tubes under axial compression[J]. Journal of Tianjin University(Science and Technology), 2020, 53(10): 1036-1044.
[36]LI B B, WANG Y Q, ZHI X H, et al. Testing, modelling and design of 7A04-T6 high-strength aluminium alloy RHS columns under axial compression[J]. Journal of Building Engineering, 2022, 57: 104910.
[37]LI B B, WANG Y Q, ZHANG Y, et al. Flexural buckling of extruded high-strength aluminium alloy SHS columns[J]. Thin-walled Structures, 2022, 179: 109717.
[38]HU Y W, RONG B, ZHANG R Y, et al. Study of buckling behavior for 7A04-T6 aluminum alloy rectangular hollow columns[J]. Thin-walled Structures, 2021, 169: 108410.
[39]RONG B, ZHANG Y C, ZHANG S, et al. Experiment and numerical investigation on the buckling behavior of 7A04-T6 aluminum alloy columns under eccentric load[J]. Journal of Building Engineering, 2022, 45: 103625.
[40]吴 鹏.冻融循环作用后铝合金管混凝土轴心受压构件力学性能研究[D].重庆:重庆交通大学,2018.
WU Peng. Study on axial compression performance of concrete filled aluminum alloy tube columns after being exposed to freezing and thawing[D]. Chong-qing: Chongqing Jiaotong University, 2018.
[41]朱明权.高温后铝管混凝土中长柱受压力学性能研究[D].徐州:中国矿业大学,2023.
ZHU Mingquan. Study on compressive properties of concrete-filled aluminum tubular medium long columns after high temperature[D]. Xuzhou: China University of Mining and Technology, 2023.
[42]昌 魏.CFRP加强铝合金管-混凝土轴心受压短柱力学性能研究[D].重庆:重庆交通大学,2020.
CHANG Wei. Research on behavior of CFRP reinforced concrete filled aluminum alloy tube stub columns under axial compression[D].Chongqing: Chongqing Jiaotong University, 2020.
[43]武健锋.高温后铝管混凝土短柱轴心受压力学性能研究[D].徐州:中国矿业大学,2019.
WU Jianfeng. Study on axially compressive behavior of concrete-filled aluminum tube after exposure to high temperature[D]. Xuzhou: China University of Mining and Technology, 2019.
[44]ZHOU F, YOUNG B. Tests of concrete-filled aluminum stub columns[J].Thin-walled Structures, 2008, 46(6): 573-583.
[45]ZHOU F, YOUNG B. Concrete-filled aluminum circular hollow section column tests[J].Thin-walled Structures, 2009, 47(11): 1272-1280.
[46]高子豪.矩形铝合金管混凝土短柱轴压性能研究[D].沈阳:沈阳建筑大学,2021.
GAO Zihao. Study on axial compression performance of aluminum alloy tube concrete short rectangular column[D]. Shenyang: Shenyang Jianzhu University, 2021.
[47]曾 翔,吴晚博,霍静思,等.圆铝合金管混凝土短柱轴心受压承载力研究[J].工程力学,2021,38(2):52-60.
ZENG Xiang, WU Wanbo, HUO Jingsi, et al. The axial strength of concrete-filled aluminum alloy circular tubular stub columns[J].Engineering Mechanics, 2021, 38(2): 52-60.
[48]刘玉强.铝合金管(圆)混凝土轴压短柱力学性能试验研究[D].沈阳:沈阳建筑大学,2020.
LIU Yuqiang. Experimental study on mechanical properties of aluminum alloy tube(circular)concrete short columns under axial compression[D]. Shen-yang: Shenyang Jianzhu University, 2020.
[49]石 岩,张纪刚,王 涛,等.新型金属管混凝土短柱轴压性能试验研究[J].建筑结构,2022,52(3):110-115.
SHI Yan, ZHANG Jigang, WANG Tao, et al. Experimental study on the axial compression performance of a new type of metal tube concrete short column[J]. Building Structure, 2022, 52(3): 110-115.
[50]AL-MAZINI M A, CHKHEWIER A H. Behavior of concrete filled aluminum square and rectangular hollow section columns under axial loads: experimental and analytical study[J]. Engineering Sciences, 2017, 25(2): 712-726.
[51]JIANG M Y, SHU Q J, LIU P X, et al. Testing and numerical simulation of concrete-filled 6061-T6 aluminum tubular stub columns[J]. Structures, 2024, 60: 105855.
[52]YAN X F, LIN S Q, ZHAO Y G. Behaviour and confinement mechanism of circular concrete-filled aluminum alloy tubular stub columns under axial compression[J]. Marine Structures, 2024, 95: 103600.
[53]YAN X F, HE M N, HAO J P, et al. Theoretical model of circular concrete-filled aluminum alloy tubular short columns under axial compression[J]. Engineering Structures, 2024, 303: 117549.
[54]RONG B, ZHAI X, LI Z Y, et al. Study on axial compression behavior of 7A04-T6 concrete-filled aluminum tubular columns[J]. Journal of Building Engineering, 2023, 76: 107118.
[55]ZHANG Z J, HAN F X, LIU Q. Experimental and finite element study on 7A04 aluminum alloy tube confined high strength concrete long column[J]. Geofluids, 2022, 2022(1): 4692054.
[56]GKANTOU M, GEORGANTZIA E, KADHIM A, et al. Geopolymer concrete-filled aluminium alloy tubular cross-sections[J]. Structures, 2023, 51: 528-543.
[57]GULER S, YAVUZ D, AYDIN M. Hybrid fiber reinforced concrete-filled square stub columns under axial compression[J]. Engineering Structures, 2019, 198: 109504.
[58]GUO J H, WANG Y M, DENG Z H, et al. Research on the axial compression performance of coral concrete-filled aluminum alloy tube columns[J]. Case Studies in Construction Materials, 2024, 20: e02952.
[59]DENG Z H, GUO J H, YU J J, et al. Axial compression performance of coral concrete-filled aluminium tube(CCFAT)square stub columns[J]. Case Studies in Construction Materials, 2021, 15: e00697.
[60]HE Z Y, DENG Z H, HU S W, et al. Axial compression performance of coral concrete-filled aluminum alloy tube(CCFAT)circular short columns[J]. Engineering Structures, 2024, 303: 117552.
[61]ZHOU F, YOUNG B. Numerical analysis and design of concrete-filled aluminum circular hollow section columns[J]. Thin-walled Structures, 2012, 50(1): 45-55.
[62]DING F X, LIAO C B, WANG E, et al. Numerical investigation of the composite action of axially compressed concrete-filled circular aluminum alloy tubular stub columns[J]. Materials, 2021, 14(9): 2435.
[63]YAN X F, AHMED M, HE M N. Behavior and design of axially loaded high-strength concrete-filled circular aluminum tubular short columns[J]. Structures, 2022, 44: 357-371.
[64]WANG F C, ZHAO H Y, HAN L H. Analytical behavior of concrete-filled aluminum tubular stub columns under axial compression[J]. Thin-walled Structures, 2019, 140: 21-30.
[65]PATEL V I, LIANG Q Q, HADI M N S. Numerical simulations of circular high strength concrete-filled aluminum tubular short columns incorporating new concrete confinement model[J]. Thin-walled Structures, 2020, 147: 106492.
[66]YE Y, WANG L, ZHANG S J, et al. Compressive behavior of concrete-filled aluminum alloy tube(CFAAT)stub column with inner carbon steel tube[J]. Structures, 2021, 32: 701-712.
[67]ZHOU F, YOUNG B. Compressive strengths of concrete-filled double-skin(circular hollow section outer and square hollow section inner)aluminium tubular sections[J]. Advances in Structural Engineering, 2019, 22(11): 2418-2434.
[68]ZHOU F, YOUNG B. Concrete-filled double-skin aluminum circular hollow section stub columns[J]. Thin-walled Structures, 2018, 133: 141-152.
[69]PATEL V I, LIANG Q Q, HADI M N S. Numerical study of circular double-skin concrete-filled aluminum tubular stub columns[J]. Engineering Structures, 2019, 197: 109418.
[70]李 兵,田立明,周 博.中空夹层钢套铝管混凝土短柱轴压性能试验研究[J].建筑科学与工程学报,2023,40(6):35-44.
LI Bing, TIAN Liming, ZHOU Bo. Experimental study on axial compression performance of concrete short columns with hollow sandwich steel jacketed aluminum tubes[J]. Journal of Architecture and Civil Engineering, 2023, 40(6): 35-44.
[71]陈宗平,宋春梅,莫琳琳,等.铝合金管螺旋筋海水海砂混凝土短柱轴压性能及承载力计算[J].建筑结构学报,2024,45(2):136-147.
CHEN Zongping, SONG Chunmei, MO Linlin, et al. Axial compressive behavior and bearing capacity calculation of spirally reinforced seawater sea-sand concrete-filled aluminum alloy tube stub columns[J]. Journal of Building Structures, 2024, 45(2):136-147.
[72]CHEN Z P, XU W S, ZHOU J. Mechanical performance of marine concrete filled CFRP-aluminum alloy tube columns under axial compression: experiment and finite element analysis[J]. Engineering Structures, 2022, 272: 114993.
[73]GAO X F, ZHANG Z Y, XU J, et al. Mechanical behavior of CFRP confined seawater sea-sand recycled concrete-filled circular aluminum-alloy tube columns under axial compression[J]. Construction and Building Materials, 2023, 397: 132355.
[74]杨虓宇,蒋 华.CFRP约束铝合金圆管混凝土短柱轴压性能试验研究[J].建筑结构,2022,52(增2):1362-1368.
YANG Xiaoyu, JIANG Hua. Experimental research on axial compression performance of CFRP-confined concrete-filled circular aluminum alloy tube stub columns[J]. Building Structure, 2022, 52(S2): 1362-1368.
[75]王 兰,姜 航,谢文超,等.CFRP-铝合金复合管高强混凝土短柱轴压性能研究[J].建筑钢结构进展,2024,26(4):1-9.
WANG Lan, JIANG Hang, XIE Wenchao, et al. Axial compressive behavior of high-strength concrete-filled CFRP-aluminum composite tubular stub columns[J]. Progress in Steel Building Structures, 2024, 26(4): 1-9.
[76]CHENG C T, TANG C R, XIONG X, et al. Experimental study and numerical analysis on the axial compression performance of CFRP strip reinforced round-end aluminum alloy tube concrete column[J]. AIP Advances, 2024, 14(2): 025119.
[77]ZHAO D, ZHANG J G, LU L, et al. The strength in axial compression of aluminum alloy tube confined concrete columns with a circular hollow section: experimental results[J]. Buildings, 2022, 12(5): 699.
[78]何宗院.铝合金圆管珊瑚混凝土短柱受压性能试验研究[D].南宁:广西大学,2019.
HE Zongyuan. Experimental study on compressive behavior of aluminum alloy tubular coral concrete short column[D].Nanning: Guangxi University, 2019.
[79]MI Q X, SHU Q J, WANG F Y, et al. Experimental study on eccentric compressive behaviors of 6061-T6 aluminum tubular long columns filled with concrete[J]. Engineering Structures, 2024, 299: 117040.
[80]RONG B, ZHANG S, ZHANG Y C, et al. Study on the ultimate bearing capacity of 7A04-T6 CFAT columns under eccentric compression[J]. Journal of Building Engineering, 2022, 46: 103654.
[81]FENG R, CHEN Y, GONG W Z. Flexural behaviour of concrete-filled aluminium alloy thin-walled SHS and RHS tubes[J]. Engineering Structures, 2017, 137: 33-49.
[82]CHEN Y, FENG R, GONG W Z. Flexural behavior of concrete-filled aluminum alloy circular hollow section tubes[J]. Construction and Building Materials, 2018, 165: 173-186.
[83]GEORGANTZIA E, BIN ALI S, GKANTOU M, et al. Flexural buckling performance of concrete-filled aluminium alloy tubular columns[J]. Engineering Structures, 2021, 242: 112546.
[84]CUI G M, MENG L Z, ZHAI X M. Buckling behaviors of aluminum foam-filled aluminum alloy composite columns under axial compression[J].Thin-walled Structures, 2022, 177: 109399.
[85]ALI S, KAMARIS G S, GKANTOU M. Flexural buckling behaviour of concrete-filled double skin aluminium alloy columns[J]. Engineering Structures, 2023, 275: 115316.
[86]CHEN Y, FENG R, XU J. Flexural behaviour of CFRP strengthened concrete-filled aluminium alloy CHS tubes[J]. Construction and Building Materials, 2017, 142: 295-319.
[87]CHEN Z P, XU W S, LIANG Y H, et al. Flexural behavior of novel marine concrete filled CFRP-aluminum alloy tube member[J]. Structures, 2024, 62: 106184.
[88]ZHU Y, CHEN Y, HE K, et al. Flexural behavior of concrete-filled SHS and RHS aluminum alloy tubes strengthened with CFRP[J]. Composite Structures, 2020, 238: 111975.
[89]ALI S B, KAMARIS G S, GKANTOU M, et al. Concrete-filled and bare 6082-T6 aluminium alloy tubes under in-plane bending: experiments, finite element analysis and design recommendations[J]. Thin-walled Structures, 2022, 172: 108907.
[90]ALI S B, KAMARIS G S, GKANTOU M. Flexural behaviour of concrete-filled double skin aluminium alloy tubes[J]. Engineering Structures, 2022, 272: 114972.
[91]任子健.铝合金管混凝土桥墩抗震性能研究[D].徐州:中国矿业大学,2022.
REN Zijian. Research on seismic behavior of concrete filled aluminum alloy tube pier[D]. Xuzhou: China University of Mining and Technology, 2022.
[92]尹书昊.7A04铝合金圆管柱及圆管混凝土柱抗震性能研究[D].天津:天津大学,2020.
YIN Shuhao. Study on the seismic performance of 7A04 aluminum alloy circular tubes column and concrete filled aluminum alloy circular tubes column[D]. Tianjin: Tianjin University, 2020.
[93]钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014.
Technical code for concrete filled steel tubular structures: GB 50936—2014[S]. Beijing: China Architecture & Building Press, 2014.
[94]Building code requirements for structural concrete and commentary: ACI 318-19[S]. Farmington Hills: American Concrete Institute, 2019.

Memo

Memo:
-
Last Update: 2025-09-25