|Table of Contents|

Modelling method for 3D transparent geology based on BIM and information construction of virtual boring holes(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年05期
Page:
171-180
Research Field:
岩土工程
Publishing date:

Info

Title:
Modelling method for 3D transparent geology based on BIM and information construction of virtual boring holes
Author(s):
XIAO Chengzhi1 QIN Zichao1 WANG Qingzhou1 SI Xiaolei2 SUN Zhijie2
(1. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; 2. Caofeidian Suntien Liquefied Natural Gas Co., Ltd., Tangshan 063000, Hebei, China)
Keywords:
transparent geology cascade construction BIM technology virtual boring hole spatial interpolation algorithm
PACS:
TU413
DOI:
10.19815/j.jace.2024.05022
Abstract:
In order to demonstrate the practical value of the accuracy, completeness, and transparency of 3D geological model in reflecting geological conditions, a 3D transparent geological modeling method based on BIM and information construction of virtual boring holes was proposed to address the key factors that affect the accuracy and transparency of the geological model in complex geological phenomena, sparse sampling data, and tedious modeling processes. This method proposed a method for collecting geological characteristic parameters by combining the concept of 3D transparent geological model cascade construction and the method of establishing stratigraphic sequences, as well as high-precision perception technology and original exploration drilling data. At the same time, virtual drilling was introduced and Delaunay triangulation algorithm was used to increase the density of drilling data points. Exploration drilling and other raw data were used as data sources, and spatial interpolation algorithm was used to construct the spatial position and feature information of virtual drilling. The results show that this method is based on BIM technology and uses a “point-face-volume” progressive approach to construct geological layers, achieving the automatic construction of three-dimensional transparent geological models. By utilizing the geological information obtained from the exposed strata or local detailed survey during the construction phase, dynamic feedback is used to correct the errors in the three-dimensional geological model information, driving the dynamic reconstruction of the three-dimensional geological model and gradually achieving transparency of the geological conditions in the target area, which can provide useful guidance for the fine construction and information management decision-making of underground engineering.

References:

[1] 潘 炜,刘大安,钟辉亚,等.三维地质建模以及在边坡工程中的应用[J].岩石力学与工程学报,2004,23(4):597-602.
PAN Wei, LIU Daan,ZHONG Huiya, et al. 3D geological modeling and its application to slope engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(4): 597-602.
[2]HOULDING S. 3D geoscience modeling: computer techniques for geological characterization[M]. Berlin: Springer Science & Business Media, 2012.
[3]俞美成,吴静红,王 源,等.三维地质建模及其在地下空间开发的应用研究[J].防灾减灾工程学报,2023,43(3):588-595,636.
YU Meicheng, WU Jinghong, WANG Yuan, et al. 3D geological modeling and its application in underground space development[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43(3): 588-595, 636.
[4]LEMON A M, JONES N L. Building solid models from boreholes and user-defined cross-sections[J]. Computers & Geosciences, 2003, 29(5): 547-555.
[5]胡瑞华,王秋明.水利水电工程三维地质模型的研究和应用[J].人民长江,2002,33(6):57-58.
HU Ruihua, WANG Qiuming. Research and application of three-dimensional geological model of water conservancy and hydropower engineering[J]. Yangtze River, 2002, 33(6): 57-58.
[6]丁恩杰,俞 啸,夏 冰,等.矿山信息化发展及以数字孪生为核心的智慧矿山关键技术[J].煤炭学报,2022,47(1):564-578.
DING Enjie, YU Xiao, XIA Bing, et al. Development of mine informatization and key technologies of intelligent mines[J]. Journal of China Coal Society, 2022, 47(1): 564-578.
[7]毛明仓,张孝斌,张玉良.基于透明地质大数据智能精准开采技术研究[J].煤炭科学技术,2021,49(1):286-293.
MAO Mingcang, ZHANG Xiaobin, ZHANG Yuliang. Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology, 2021, 49(1): 286-293.
[8]宋仁波,崔璐阳,陶叶青,等.基于GIS空间分析的虚拟钻孔确定与实现方法[J].煤田地质与勘探,2018,46(6):67-73.
SONG Renbo, CUI Luyang, TAO Yeqing, et al. A method for determining and implementing the virtual borehole based on GIS spatial analysis[J]. Coal Geology & Exploration, 2018, 46(6): 67-73.
[9]程建远,王保利,范 涛,等.煤矿地质透明化典型应用场景及关键技术[J].煤炭科学技术,2022,50(7):1-12.
CHENG Jianyuan, WANG Baoli, FAN Tao, et al. Typical application scenes and key technologies of coal mine geological transparency[J]. Coal Science and Technology, 2022, 50(7): 1-12.
[10]李志勇,杜少鹏,郭 曼,等.智能化煤矿透明地质新技术:矿井地震全波形反演技术研究与实践[J].智能矿山,2023,4(6):54-62.
LI Zhiyong, DU Shaopeng, GUO Man, et al. A new transparent geological technology of intelligent coal mine-research and practice of mine seismic full waveform inversion technology[J]. Journal of Intelligent Mine, 2023, 4(6): 54-62.
[11]袁 亮,张平松.煤炭精准开采透明地质条件的重构与思考[J].煤炭学报,2020,45(7):2346-2356.
YUAN Liang, ZHANG Pingsong. Framework and thinking of transparent geological conditions for precise mining of coal[J]. Journal of China Coal Society, 2020, 45(7): 2346-2356.
[12]袁 亮,张平松.煤矿透明地质模型动态重构的关键技术与路径思考[J].煤炭学报,2023,48(1):1-14.
YUAN Liang, ZHANG Pingsong.Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society, 2023, 48(1): 1-14.
[13]吴佳明,陈 健,陈国良,等.基于BIM技术的地铁基坑工程施工仿真模拟方法[J].岩土力学,2022,43(增1):553-566,579.
WU Jiaming, CHEN Jian, CHEN Guoliang, et al. Construction simulation method of metro foundation pit based on BIM technology[J]. Rock and Soil Mechanics, 2022, 43(S1): 553-566, 579.
[14]ZHANG W Y, HAO T, CHANG Y, et al. Time-frequency analysis of enhanced GPR detection of RF tagged buried plastic pipes[J]. NDT & E International, 2017, 92: 88-96.
[15]张渭军,王文科.基于钻孔数据的地层三维建模与可视化研究[J].大地构造与成矿学,2006,30(1):108-113.
ZHANG Weijun, WANG Wenke. 3D modeling and visualization of geological layers based on borehole data[J]. Geotectonica et Metallogenia, 2006, 30(1): 108-113.
[16]李 璐,刘新根,吴蔚博.基于钻孔数据的三维地层建模关键技术[J].岩土力学,2018,39(3):1056-1062.
LI Lu, LIU Xingen, WU Weibo. Key technology of 3D stratum modelling based on borehole data[J]. Rock and Soil Mechanics, 2018, 39(3): 1056-1062.
[17]王润怀,李永树,刘永和,等.三维地质建模中虚拟钻孔的引入及其确定[J].地质与勘探,2007,43(3):102-107.
WANG Runhuai, LI Yongshu, LIU Yonghe, et al. Import and determination methods for virtual borehole in geo-3D modeling[J]. Geology and Prospecting, 2007, 43(3): 102-107.
[18]曹 权,项 伟,贾海梁,等.跨孔超高密度电阻率法在球状风化花岗岩体探测中的应用[J].工程地质学报,2013,21(5):730-735.
CAO Quan, XIANG Wei, JIA Hailiang, et al. Application of cross-hole ultra-density resistivity method to detection of spherically weathered granite[J]. Journal of Engineering Geology, 2013, 21(5): 730-735.
[19]COWPERTWAIT P S P. A spatial-temporal point process model of rainfall for the Thames catchment, UK[J]. Journal of Hydrology, 2006, 330(3/4): 586-595.
[20]CHEN G X, ZHU J, QIANG M Y, et al. Three-dimensional site characterization with borehole data — a case study of Suzhou area[J]. Engineering Geology, 2018, 234: 65-82.

Memo

Memo:
-
Last Update: 2025-09-25