|Table of Contents|

Research on stress mechanism of concrete tower foundation structure for onshore wind turbine(PDF)

《建筑科学与工程学报》[ISSN:1673-2049/CN:61-1442/TU]

Issue:
2025年06期
Page:
98-110
Research Field:
建筑结构
Publishing date:

Info

Title:
Research on stress mechanism of concrete tower foundation structure for onshore wind turbine
Author(s):
WU Xiaodong1 XIAO Shun2 ZHANG Liuyang1 ZHANG Rongguo1 FANG Hao1
(1.POWERCHINA Shanghai Electric Power Engineering Co., Ltd., Shanghai 200025, China; 2. Shanghai Key Laboratory of Engineering Structure Safety, Shanghai Research Institute of Building Sciences Co., Ltd., Shanghai 200032, China)
Keywords:
concrete tower foundation subgrade reaction coefficient foundation-spring model foundation-reaction model finite element method tension-bending section
PACS:
TU476
DOI:
10.19815/j.jace.2024.05087
Abstract:
Regarding the problem that setting of a cavity at the center of concrete tower foundation for onshore wind turbines(referred to as “concrete tower foundation”)due to the requirement of prestressed anchoring leads to complex stress in the foundation structure, and relevant specifications had insufficient coverage on the issue, an analytical method for studying the stress mechanism of key sections of concrete tower foundation from the perspective of internal forces based on finite element model was proposed. Two types of finite element analysis models were established, one was the finite element foundation-spring model based on the subgrade reaction coefficient method, and the other was the foundation-reaction model based on the assumption of linear base reaction specified in the specifications. Through the comparison of the analysis results of the two types of models, the rationality of foundation-spring model was verified. The results show that as the subgrade reaction coefficient increases, the base separation zone transforms from a bow shape to a fan shape, the position of the maximum base reaction shifts toward the center of foundation, and the internal forces of the key sections of foundation show a decreasing trend. Each section of the foundation's outer ring slab, cavity bottom slab, ring wall, and corbel bears axial force in addition to bending moment. Among them, the circumferential section of the outer ring slab, the radial and circumferential sections of cavity bottom slab, and the circumferential sections of ring wall and corbel are all tension-bending sections with relatively high tension levels, which is unfavorable to concrete structure. The existing simplified calculation methods cannot consider the axial force of sections, resulting in insufficient reinforcement in tension-bending sections, which should be taken seriously by the engineering community.

References:

[1] 刘骁繁,林禹轩,刘志伟,等.在建输电铁塔-悬浮抱杆耦合体系动力特性分析[J].建筑科学与工程学报,2025,42(1):121-130.
LIU Xiaofan, LIN Yuxuan, LIU Zhiwei, et al. Analysis of dynamic characteristics of transmission tower-suspension holding rod coupling system under construction[J]. Journal of Architecture and Civil Engineering, 2025, 42(1): 121-130.
[2]LAGO B D, FLESSATI L, MARVEGGIO P, et al. Experimental tests on shallow foundations of onshore wind turbine towers[J]. Structural Concrete, 2022, 23(5): 2986-3006.
[3]王斯伟,白宝华,潘启科,等.圆形扩展式风机基础体型优化设计研究[J].云南电力技术,2019,47(5):86-89.
WANG Siwei, BAI Baohua, PAN Qike, et al. Research on optimization design of basic shape of circular extended wind turbine foundation[J]. Yunnan Electric Power, 2019, 47(5): 86-89.
[4]张浦阳,曾 斌,丁红岩,等.陆上风机圆形扩展基础底板内力及脱开规律研究[J].建筑结构,2020,50(3):129-136.
ZHANG Puyang, ZENG Bin, DING Hongyan, et al. Analysis of internal force and disengagement law for circular expansion foundation plate of onshore wind turbine[J]. Building Structure, 2020, 50(3): 129-136.
[5]郑 阳.圆形扩展式风机基础钢筋设计优化分析[J].南方能源建设,2022,9(增1):76-82.
ZHENG Yang. Design optimization for the reinforcement of wind turbine foundation[J]. Southern Energy Construction, 2022, 9(S1): 76-82.
[6]樊晨阳.钢混塔筒风机基础数值模拟分析及结构优化研究[D].武汉:华中科技大学,2022.
FAN Chenyang. Numerical simulation analysis and structural optimization of steel-concrete tower wind turbine foundation[D]. Wuhan: Huazhong University of Science and Technology, 2022.
[7]朱 岩,卢红前,吉春明,等.钢混塔筒风机基础的局部抗冲切设计[J].武汉大学学报(工学版),2020,53(增1):153-157.
ZHU Yan, LU Hongqian, JI Chunming, et al. Local punching resistance design of steel concrete tower turbine foundation[J]. Engineering Journal of Wuhan University, 2020, 53(S1): 153-157.
[8]宋 宁,赵新宏,潘启科,等.混凝土塔筒风机基础有限元模拟计算及结构优化研究[J].科学技术创新,2025(10):121-125.
SONG Ning, ZHAO Xinhong, PAN Qike, et al. Finite element simulation calculation and structural optimization research on the foundation of concrete tower fan[J]. Scientific and Technological Innovation, 2025(10): 121-125.
[9]YANG C, HE W J, ZHANG J, et al. Internal force and damage analysis of foundation of steel — concrete wind turbine tower[J]. Proceedings of the Institution of Civil Engineers — Structures and Buildings, 2024,177(10):930-940.
[10]基坑工程技术标准: DJ/TJ 08-61—2018[S]. 上海: 同济大学出版社, 2018.
Technical code for excavation engineering: DJ/TJ 08-61—2018[S]. Shanghai: Tongji University Press, 2018.
[11]地铁设计规范:GB 50157—2013[S].北京:中国建筑工业出版社,2014.
Code for design of metro: GB 50157—2013[S]. Beijing: China Architecture & Building Press, 2014.
[12]陆上风电场工程风电机组基础设计规范:NB/T 10311—2019[S].北京:中国电力出版社,2020.
Code for design of wind turbine foundations for onshore wind power projects: NB/T 10311—2019[S]. Beijing: China Electric Power Press, 2020.
[13]徐芝纶.弹性力学(下册)[M].5版.北京:高等教育出版社,2016.
XU Zhilun. Elasticity(volume II)[M]. 5th ed. Beijing: Higher Education Press, 2016.
[14]混凝土结构设计规范:GB 50010—2002[S].北京:中国建筑工业出版社,2004.
Code for design of concrete structures: GB 50010—2002[S]. Beijing: China Architecture & Building Press, 2004.
[15]潘瑞林,易 鑫,孙宝忠.地铁勘察中综合方法确定基床系数[J].铁道勘察,2013,39(3):22-25.
PAN Ruilin, YI Xin, SUN Baozhong.Comprehensive method determining the coefficient of subgrade reaction in metro investigation[J]. Railway Investigation and Surveying, 2013, 39(3): 22-25.
[16]刘志刚.不同岩土试验及原位测试方法在地铁勘察中的应用[J].城市勘测,2017(5):172-176.
LIU Zhigang. Different geotechnical and in-situ test application in metro investigation[J].Urban Geotechnical Investigation & Surveying, 2017(5): 172-176.
[17]高层建筑岩土工程勘察规程:JGJ 72—2004[S].北京:中国建筑工业出版社,2004.
Specification for geotechnical investigation of tall buildings: JGJ 72—2004[S]. Beijing: China Architecture & Building Press, 2004.
[18]陆上风电场工程地质勘察规范:NB/T 31030—2022[S].北京:中国水利水电出版社,2022.
Code for engineering geological investigation of onshore wind power projects: NB/T 31030—2022[S]. Beijing: China Water & Power Press, 2022.
[19]城市轨道交通岩土工程勘察规范:GB 50307—2012[S].北京:中国计划出版社,2012.
Code for geotechnical investigations of urban rail transit: GB 50307—2012[S]. Beijing: China Planning Press, 2012.
[20]刘梅梅,杨 敏,王海军.陆上风力机圆形扩展基础基底反力及冲切特性研究[J].太阳能学报,2015,36(5):1130-1135.
LIU Meimei, YANG Min, WANG Haijun. Study on subgrade reaction and punching of circular spread foundation for onshore wind turbines[J]. Acta Energiae Solaris Sinica, 2015, 36(5): 1130-1135.
[21]李 征,黄 宜,黄冬平,等.预制装配梁板式风力机基础整体性分析[J].太阳能学报,2023,44(10):427-436.
LI Zheng, HUANG Yi, HUANG Dongping, et al. Integral analysis of prefabricated beam-slab wind turbine foundation[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 427-436.

Memo

Memo:
-
Last Update: 2025-11-25